
www.linaro.org

LLVM Auto-Vectorization

Past

Present

 Future

Renato Golin

http://www.linaro.org/

www.linaro.org

LLVM Auto-Vectorization

● Plan:

● What is auto-vectorization?

● Short-history of the LLVM vectorizer

● What do we support today, and an overview of how it works

● Future work to be done

● This talk is NOT about:

● Performance of the vectorizer compared to scalar LLVM

● Performance of the LLVM vectorizer against GCC's

● Feature comparison of any kind...

● All that is too controversial and not beneficial for understanding

http://www.linaro.org/

www.linaro.org

● What is auto-vectorization?
● It's the art of detecting instruction-level parallelism,
● And making use of SIMD registers (vectors)
● To compute on a block of data, in parallel

Auto-Vectorization?

http://www.linaro.org/

www.linaro.org

Auto-Vectorization?

● What is auto-vectorization?
● It can be done in any language
● But some are more expressive than others
● All you need is a sequence of repeated instructions

http://www.linaro.org/

www.linaro.org

The Past

How we came to be...
Where did it all come from?

LLVM Auto-Vectorization

http://www.linaro.org/

www.linaro.org

Past

● Up until 2012, there was only Polly
● Polyhedral analysis, high-level loop optimizations
● Preliminary support for vectorization
● No cost tables, no data-dependent conditions
● And it needed external plugins to work

● Then, the BBVectorizer was introduced (Jan 2012)
● Basic-block only level vectorizer (no loops)
● Very aggressive, could create too many suffles
● Got a lot better over time, mostly due to the cost model

http://www.linaro.org/

www.linaro.org

● The Loop Vectorizer (Oct 2012)
● It could vectorize a few of the GCC's examples
● It was split into Legality and Vectorization steps
● No cost information, no target information
● Single-block loops only

Past

http://www.linaro.org/

www.linaro.org

● The cost model was born (Late 2012)
● Vectorization was then split into three stages:

● Legalization: can I do it?
● Cost: Is it worth it?
● Vectorization: create a new loop, vectorize, ditch the older

● Only X86 was tested, at first

● Cost tables were generalized for ARM, then PPC
● A lot of costs and features were added based on manuals

and benchmarks for ARM, x86, PPC
● It should work for all targets, though
● Reduced a lof of the regressions and enabled the vectorizer

to run at lower optimization levels, even at -Os
● The BB-Vectorizer started to benefit from it as well

Past

http://www.linaro.org/

www.linaro.org

● The SLP Vectorizer (Apr 2013)
● Stands for superword-level paralellism
● Same principle as BB-Vec, but bottom-up approach
● Faster to compile, with fewer regressions, more speedup
● It operates on multiple basic-blocks (trees, diamonds, cycles)
● Still doesn't vectorize function calls (like BB, Loop)

● Loop and SLP vectorizers enabled by default (-Os, -O2, -O3)
● -Oz is size-paranoid
● -O0 and -O1 are debug-paranoid
● Reports on x86_64 and ARM have shown it to be faster on

real applications, without producing noticeably bigger binaries
● Standard benchmarks also have shown the same thing

Past

http://www.linaro.org/

www.linaro.org

The Present

What do we have today?

LLVM Auto-Vectorization

http://www.linaro.org/

www.linaro.org

Present - Features
● Supported syntax

● Loops with unknown trip count

● Reductions

● If-Conversions

● Reverse Iterators

● Vectorization of Mixed Types

● Vectorization of function calls

See http://llvm.org/docs/Vectorizers.html for more info.

http://www.linaro.org/
http://llvm.org/docs/Vectorizers.html

www.linaro.org

Present - Features
● Supported syntax

● Runtime Checks of Pointers

● Inductions

● Pointer Induction Variables

● Scatter / Gather

● Global Structures Alias Analysis

● Partial unrolling during vectorization

See http://llvm.org/docs/Vectorizers.html for more info.

http://www.linaro.org/
http://llvm.org/docs/Vectorizers.html

www.linaro.org

Present - Validation

● CanVectorize()
● Multi-BB loops must be able to if-convert
● Exit count calculated with Scalar Evolution of induction
● Will call canVectorizeInstrs, canVectorizeMemory

● CanVectorizeInstrs()
● Checks induction strides, wrap-around cases
● Checks special reduction types (add, mul, and, etc)

● CanVectorizeMemory()
● Checks for simple loads/stores (or annotated parallel)
● Checks for dependent access, overlap, read/write-only loop
● Adds run-time checks if possible

http://www.linaro.org/

www.linaro.org

Present - Cost

● Vectorization Factor
● Make sure target supports SIMD
● Detect widest type / register, number of lanes
● -Os avoids leaving the tail loop (ex. Run-time checks)
● Calculates cost of scalar and all possible vector widths

● Unroll Factor
● To remove cross-iteration deps in reductions, or
● To increase loop-size and reduce overhead
● But not under -Os/-Oz

● If not beneficial, and not -Os, try to, at least, unroll the loop

http://www.linaro.org/

www.linaro.org

Present - Vectorization

● Creates an empty loop

● ForEach BasicBlock in the Loop:
● Widens instructions to <VF x type>
● Handles multiple load/stores
● Finds known functions with vector types
● If unsupported, scalarizes (code bloat, performance hit)

● Handles PHI nodes
● Loops over all saved PHIs for inductions and reductions
● Connects the loop header and exit blocks

● Validates
● Removes old loop, cleans up the new blocks with CSE
● Update dominator tree information, verify blocks/function

http://www.linaro.org/

www.linaro.org

The Future

What will come to be?

LLVM Auto-Vectorization

http://www.linaro.org/

www.linaro.org

● Future changes to the vectorizer will need re-thinking some code
● Adding call-backs for error reporting for pragmas
● Adding more complex memory checks, stride access
● More accurate/flexible cost models

● Unify the feature set across all vectorizers
● Migrate remaining BB features to SLP vectorizer
● Implement function vectorization on all
● Deprecate the BB vectorizer

● Integrate Polly and Loop Vectorizer
● Allow outer-loop transformations and more complicated cases
● Make Polly an integral part of LLVM

Future – General

http://www.linaro.org/

www.linaro.org

● Hints to the vectorizer, doesn't compromise safety
● The vectorizer will still check for safety (memory, instruction)

● #pragma vectorize
● disable/enable helps work around cost model problems
● width(N) controls the size (in elements) of the vector to use
● unroll(N) helps spotting extra cases

● Safety pragmas still under discussion...

Future – Pragmas

http://www.linaro.org/

www.linaro.org

Future – Strided Access

● LLVM vectorizer still doesn't have non-unit stride support

● Some strided access can be exposed with loop re-roller

http://www.linaro.org/

www.linaro.org

● But if the operations are not the same, we can't re-roll

● We have to unroll the loop to find interleaved access

Future – Strided Access

http://www.linaro.org/

www.linaro.org

Thanks & Questions

● Thanks to:
● Nadav Rotem
● Arnold Schwaighofer
● Hal Finkel
● Tobias Grosser
● Aart J.C. Bik's “The Software Vectorization Handbook”

● Questions?

http://www.linaro.org/

www.linaro.org

References

● LLVM Sources
● lib/Transform/Vectorize/LoopVectorize.cpp
● lib/Transform/Vectorize/SLPVectorizer.cpp
● lib/Transform/Vectorize/BBVectorize.cpp

● LLVM vectorizer documentation
● http://llvm.org/docs/Vectorizers.html

● GCC vectorizer documentation
● http://gcc.gnu.org/projects/tree-ssa/vectorization.html

● Auto-Vectorization of Interleaved Data for SIMD
● http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.6457

http://www.linaro.org/
http://llvm.org/docs/Vectorizers.html
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.6457

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

