
OCL OMP

clang
reinven&ng	
 the	
 compiler

C Obj-C

���1

C++

Alp	
 Toker h3p://www.nuan&.com

http://www.nuanti.com

Overview

• What can we achieve going beyond compilation?	

• Why are we compelled to invent a better wheel?	

• How can we make everyday life better for coders?	

• Could the compiler itself become an instrument
for wider social change?

���2

Clang	
 in	
 a	
 Nutshell

LLVM	

backend

clang	

frontend

lld	

linker

clang	

driver

clang-cl	

driver

���3

CodeGen
to LLVM IR

Analysis ARCMigrate AST ASTMatchers Basic CodeGen Driver Edit Format Frontend
FrontendTool Headers Index Lex Parse Rewrite Sema Serialization StaticAnalyzer Tooling	

Sema
semantic analysis

Parse
semantic analysis

Lex
tokenization and
preprocessing

AST
syntax tree

Analyzer
static analysis

���4

clang	
 frontend	

“lowering”

Plugins
& frontend

passes
Rewrite

& other utilities

Tooling
build-your-own

CIndex
indexing engine

libclang
stable C API

���5

Why	
 invent	
 a	
 be;er	
 wheel?

���6

MSVC	
 support	
 is	
 coming.	
 But	

why	
 are	
 we	
 even	
 doing	
 this?

���7

���8

���9

ISO	
 C
Objec&ve	
 C

ISO	
 C++

a	
 kind	
 of	
 geeky
Rose;a	
 stone

MicrosoE	
 Visual	
 C++

OpenCL

OpenMP

3.5:	
 MSVC	
 CompaJbility

• More significant than just Windows support	

• Unusual parsing	

• Name mangling	

• Built-in types	

• Delayed template parsing
���10

clang-­‐cl.exe

• A cl.exe drop-in replacement driver	

• Visual Studio integration

���11

���12

���13

How?

���14

The	
 Clang	
 Parser

• Hand-written recursive-descent parser.	

• A single unified parser for C/C++/ObjC	

• (Mostly) decoupled from the AST representation

���15

Clang	
 SemanJc	
 Analysis

• Sema: The brains of the operation.	

• Builds the AST and computes types, linkage etc.	

• Some problems here too.

���16

What	
 next?

���17

The	
 road	
 to	
 Faster	
 CompilaJon

• In-process execution currently under investigation	

• Multi-TU compilation supporting modules	

• Cached resources across invocations	

• Use MCJIT for constexpr compile-time
evaluation?

���18

Spot	
 the	
 problem	
 in	
 this	
 code…

���19

 bool ProcessingFailed =
 for (unsigned
 std::string
 // FIXME: chdir is thread hostile; on the other hand, creating the same
 // behavior as chdir is complex: chdir resolves the path once, thus
 // guaranteeing that all subsequent relative path operations work
 // on the same path the original chdir resulted in. This makes a difference
 // for example on network filesystems, where symlinks might be switched
 // during runtime of the tool. Fixing this depends on having a file system
 // abstraction that allows openat() style interactions.
 if (chdir
 llvm::

 std::vector
 for (unsigned
 CommandLine =
 assert(!CommandLine.
 CommandLine[
 // FIXME: We need a callback mechanism for the tool writer to output a
 // customized message for each file.
 DEBUG({
 llvm::
 });

Time	
 for	
 Compiler	
 Accessibility?
• Vision and motion impaired users code too.

• Hierarchical documents lend themselves to universal access:	

• The AST is a natural representation here to get started.	

• Code completion machinery can help select inputs and refactoring
will enable edits out of scope.	

• Diagnostics can be annotated for voice output.	

• We have all the technology today, yet no a11y story to speak of.
���20

Clang	
 &	
 the	
 Linux	
 Kernel

• clang -m16: Code generation to
support the x86 boot loader
appropriate for a CPU running in 16-bit
mode.	

• Integrated ASM parser support
imminent for all .S files

• Users & developers joining the LLVM
community to fulfil their needs.

���21

LLVMLinux	

11:00 AM	

The	
 Clang	
 AST
• Abstract Syntax Tree represented as a C++ class hierarchy	

• Uses LLVM’s casting system, not RTTI	

• Informal representation, some problems here:	

• Objective-C duplication. Function/Method, Interface/Record/
Class…	

• Some semantic analysis still “performed” by AST	

• Type system omits linkage & other details, time to address this?
���22

���23

LLVM	
 and	
 Clang	
 are	

defending	
 your	
 SoEware	

Freedom.	
 Here’s	
 how…

���24

!

(That’s called defending your Software Freedom.)

Vendors are switching:	

From 100% proprietary toolchains to
90%-100% Free Software compiler
stacks built around clang.

(Freedom #1)

the freedom to innovate

���25

(Freedom #2)

LLVM	
 Community	
 2.0

• Do we approach controversial issues effectively?	

• What makes a patch acceptable?	

• Do we welcome new contributors or is there an
initiation by fire?	

• How should we handle non-code contributions?
���26

1.5m LoC30 active developers 500 commits per month

Clang	
 Zeitgeist	
 2014

���27

Some	
 introspecJve	
 quesJons…

• Where does our infrastructure come from?	

• Is there a framework to deal with emergencies
and existential threats to our project?	

• Do we have transparent oversight?	

• How about…
���28

���29

LLVM	
 Founda&on
compilers	
 for	
 everyone

[
 proposal	
]	
 [
 draft	
]	
 [
 please-­‐review	
]

Planet Clang
http://planet.clang.org

LLVM Weekly
http://llvmweekly.org

���30

http://planet.clang.org
http://llvmweekly.org

OpJmizer	
 pragmas	
 &	
 a;ributes

• A desire to offer hands-on control over the LLVM
code generation and optimizer.	

• Vectorization attributes	

• optnone — or more granularity?

���31

Auto-vectorization	

11:00 AM	

���32

Alp	
 Toker
alp@nuan&.com

TOGETHER, WE CAN
REINVENT THE COMPILER.

mailto:alp@nuanti.com

