Creating an SPMD Vectorizer for OpenCL with LLVM
LLVM 2015 Tutorial

Pierre-André Saulais
<pierre-andre@codeplay.com>

Codeplay Software
@codeplaysoft

October 29, 2015

What this tutorial is about

* Vectorizing 4
— Transform whole functions using LLVM [1, 2]
— "Horizontal" vectorization (not loop-based)

SPMD (Single Program, Multiple Data) Kernels

— Data-parallel execution model

— Compute frameworks like OpenCL™ and CUDA™
for CPUs, DSPs,

— Explicitly programmed SIMD unit(s)
— Can execute both scalar and vector instructions

An introduction
— Introduce concepts needed to create a basic vectorizer

NVIDIA.
— Starting point, not finished product CUDA

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Introduction

Overview

Part 1: Background
e SPMD Execution Model
* Vectorization

Part 2: Implementing a SPMD Vectorizer
e Overview
* Packetization Stage
* Scalarization Stage
* Control Flow Conversion Stage

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Introduction

Part 1

Background

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 1: Background

Part 1: Background

e SPMD Execution Model

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 1: Background

SPMD Execution Model

¢ Single program

— Scalar form, but implicit SIMD execution
¢ Multiple instances running in parallel

— Each instance working on a different data chunk
* On GPU

— Divide work between lanes of SIMD units (fine division)
— SIMD execution in lockstep

* OnCPU

— Divide work between cores (coarse division)
— Sequential execution within a core (naive approach)

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 1: Background

Single Program

e Kernel function
— Entry point for the computation

¢ Executed once per work-item

— As if there was a loop around it (but no dependency between iterations)
— Access to the iteration counter using get_global id(@)

kernel void add_uniform(int *dst, int *dst = ...;
int *src, int *src = ...;
int alpha) { int alpha = ...;
int tid = get_global_id(©@); for (int tid = @; tid < num_items; tid++) {
dst[tid] = src[tid] + (alpha - 1); dst[tid] = src[tid] + (alpha - 1);
} }

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 1: Background

Division of Work

e Work-item

— Unit of work
— One instance of a program
— Executed in parallel by Execution Units (threads)

¢ |teration space

— 1D (array shape), used in this tutorial
— 2D (grid shape)

1D Iteration Space

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 1: Background

Part 1: Background

* Vectorization

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 1: Background

Why Vectorize?

* Many executions units each executing one instance of a single program
— Works well on GPU (many hardware threads)
— Not so much on CPU (very few cores)
— CPU has to execute many work-items sequentially

¢ Speed up this sequential computation using SIMD units

— Vertical Vectorization
— Horizontal Vectorization

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 1: Background

10

Vertical Vectorization

e Patterns within a single work-item
— e.g. loops within a kernel

¢ Using the LLVM Loop Vectorizer or SLP Vectorizer
¢ However, not all kernels contain vectorizable patterns

QOO - O
)

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 1: Background

1

Horizontal Vectorization

e Across work-items

— Compute multiple work-items at the same time
— Take advantage of the execution model (single program, multiple data)

* Does not depend on special code patterns like loops
¢ SPMD Vectorizer

)

Vectorization Width SMD Packet

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 1: Background

12

SPMD Vectorizer

¢ Vectorizes a SPMD program's entry
point function
* Given a function F and vectorization
factor N, produces a function V Ey
— Calling V Fy is like calling F, but N
times (on consecutive work-items)
— F and V Fy have the same signature
¢ Vectorization may be allowed to fail

— Work on cloned function
— Use original function on failure

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

void F (args) {

3

Q
[
)

<>
1 work-itewm

Part 1: Background

void VF, (args) {

HE® - @
BEE &
BREICED

N work-itews

13

Implementation Level: IR or MI?

* IR
+ Use-def graph and RAUW make for straightforward graph transformations
+ Easy to target multiple platforms
? Generally higher-level (simpler implementation?)
— Platform-specific features more difficult to use
— SIMD predication only for a few operations (select, load/stores)

¢ Machinelnstr (i.e. backend level)
+ Easy to use platform-specific features (e.g. predication, mask registers)
? Generally lower-level (more powerful?)
— More platform-specific code
— Graph-based transformations not as straightforward
* Both?
— Transformations at IR level, generating CFG-specific metadata
— Use metadata in backend to do Ml-level predication

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 1: Background

14

Glossary

Work-item: Unit of computation to execute in parallel

Instance: State associated with one work-item

SIMD Lane: Execution of one instance of a vectorized kernel

SIMD Group: Contains all lanes that can be executed in parallel (at the same time)
SIMD Width: Number of parallel lanes, equal to vectorization factor (N)

Packet: Maps 1 value in the original function to N values, one per SIMD lane

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 1: Background 15

Part 2

Implementing a SPMD Vectorizer

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Part 2: Implementing a SPMD Vectorizer

16

Part 2: Implementing a SPMD Vectorizer

e QOverview

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer

17

Structure

¢ Pipeline design

— F is repeatedly transformed by different stages

— Stages are independent of each other
— Each stage consists of one or more IR passes
— Most stages require some analysis

¢ Analyses

— Capture information about the IR to vectorize
— May need updating after a stage (stale information)

— May depend on other analyses

Cowtrol
F —| Prepare Flow
Conversion

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Packet Opts
N

Part 2: Implementing a SPMD Vectorizer

VF,

18

Analysis Examples

¢ Uniform Value Analysis (UVA)

— Marks values as either uniform or varying
— Uniform: Packet where values are identical for all lanes
— Varying: Packet where values are not identical for all lanes

* Divergence Analysis

— Determines which branches, which basic blocks are divergent

— Divergent branch: Some lanes take one side, remaining lanes the other side
— Divergent block: Not all lanes are active when executing the block

— Depends on UVA

¢ SIMD Width Analysis

— Chooses a 'good' width N based on register/instruction usage
— Depends on UVA

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer

19

Part 2: Implementing a SPMD Vectorizer

* Packetization Stage

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer

20

Packetization Overview

N
Stage that does the actual vectorization: F — VEy

— Calling VEy is like calling F, but N times (N: SIMD width)
— Straightforward thanks to preparation from previous stages

This is done per-instruction, for the whole function
— Instructions that define a value: define N values, one for each instance
— Instructions with side effects: perform side effects for each instance

¢ Only varying instructions need packetization

— Uniform instructions can remain scalar, executed once per work-group
— Depends on UVA to know which instructions to vectorize

Control
F —| Prepare Flow Packet VF,
Cownversion

/l\

N

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer

21

Uniform Value Analysis

Example that combines uniform and varying values:

kernel void add_uniform(int *dst, int *src, int alpha) {
int tid = get_global_id(®);
dst[tid] = src[tid] + (alpha - 1);

define void @add_uniform(i32* %dst, i32* %src, i32 %alpha) {
entry:

%tid = 132 @get_global id(i32 @)

%arrayidx = getelementptr i32* %src, i32 %tid

%tmp = load i32* %arrayidx, align 4

%sub = sub i32 %alpha, 1

%add = add i32 %sub, %tmp

%arrayidx2 = getelementptr i32* %dst, 132 %tid

store 132 %addl, i32* %arrayidx2, align 4

ret void

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer

22

Uniform Value Analysis

* Finds 'root' values

— Varying values with no varying operand

— Example: get_global_id(0) has a different value for each instance
* Marks each IR value as uniform or varying

— All values start as uniform

— Marking a value as varying causes all users to also be marked varying
— Marking is done recursively, starting with roots
— Values are marked before their users, to avoid cycles (phi nodes)

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer

23

UVA Example: Start

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Part 2: Implementing a SPMD Vectorizer

24

UVA Example: Propagation

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Yoalpha

Part 2: Implementing a SPMD Vectorizer

25

UVA Example: End

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Yoalpha

Part 2: Implementing a SPMD Vectorizer

26

Memory Addressing

¢ Packetization depends on the addressing mode

— Each memory operation can access N elements

— Address usually has the form “base + offset’
— Need to evaluate the offset for each of the N |

* How are these elements laid out in memory?

anes

— The layout affects how operations are packetized oo
— Most layouts can be described with a single stride

¢ Stride is the distance between successive elements

— Expressed in number of elements
— One means elements are consecutive

— Negative means memory offsets are decreasing

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Part 2: Implementing a SPMD Vectorizer

27

Uniform Memory Addressing

¢ Packetized offset is uniform (e.g. < 3,3,3,3 >)

e Constant Stride = 0

¢ Transformed to a regular scalar load or store

int *src;
int x = src[3];

Vector Elements

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

golainia

1 2 4 5

Mewory Locations (o§§set)

Part 2: Implementing a SPMD Vectorizer

28

Sequential Memory Addressing

* Packetized offset is a sequence like < 2,3,4,5 >

e Constant Stride = 1

¢ Transformed to a regular vector load or store

int *src;
int tid = get_global_id(®);
int x = src[tid + 2];

Vector Elements

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Mewory Locations (o§§set)

Part 2: Implementing a SPMD Vectorizer

29

Interleaved Memory Addressing

* Packetized offset is a sequence like < 0,2, 4,6 >

e Constant Stride > 1

¢ Transformed to an interleaved load or store

int *src;

int tid = get_global_id(®);
int even = src[tid * 2];

int odd = src[(tid * 2) + 1];

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Vector Elements

‘

H

1 2 < 4 5
Mewory Locations (o§§set)

Part 2: Implementing a SPMD Vectorizer

(]

30

Arbitrary Memory Addressing

* Packetized offset can be any sequence (e.g. < 5,3,7,3 >)
* Variable stride

¢ Transformed to a gather load or scatter store

(]

int *src;

int *map; // {5, 3, 7, 3};
int tid = get_global_id(@);
int x = src[map[tid]];

Vector Elements

__é___

[=]
0 1 2 < 4 5 6 7
Mewory Locations (o§§set)

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer 31

Packetization Process

¢ Find leaves

— Leaves allow varying values to 'escape' from the function, they are:
— Store instructions (varying operand)

— Call instructions (varying operand, or call has no use)

— Return instructions

* Recursively packetize leaves and their operands
Broadcast uniform values (e.g. argument, constants)
Replace get_global_id(0) with a vector of IDs
Packetize operands first, then instruction (top-down)
Cache packetized values to prevent duplication

¢ Delete original scalar instructions if dead

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer

32

Packetization Example

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Yoalpha

Part 2: Implementing a SPMD Vectorizer

33

Packetization Example

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Yoalpha

Part 2: Implementing a SPMD Vectorizer

34

Packetization Example

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Yoalpha

broadcast, ’

Part 2: Implementing a SPMD Vectorizer

35

Packetization Example

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Yoalpha

broadcast, ’

Part 2: Implementing a SPMD Vectorizer

36

Packetization Example

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

/@

Part 2: Implementing a SPMD Vectorizer

37

Packetization Example

define void @__v4_add_uniform(i32* %dst, i32* %src, i32 %alpha) {
entry:

%tid = call i32 @get global id(i32 @)

%arrayidx = getelementptr i32* %src, i32 %tid

%0 = bitcast i32* %arrayidx to <4 x i32>*

%1 = load <4 x i32>* %0, align 4

; Broadcast (alpha - 1) to a vector

%sub = sub i32 %alpha, 1

%insert = insertelement <4 x i32> undef, i32 %sub, i32 @
%broadcast_sub = shufflevector <4 x i32> %insert,

%add = add nsw <4 x 132> %broadcast_sub, %1

%arrayidx2 = getelementptr i32* %dst, 132 %tid
%2 = bitcast i32* %arrayidx2 to <4 x i32>*
store <4 x 132> %add, <4 x i32>* %2, align 4
ret void

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer

38

Part 2: Implementing a SPMD Vectorizer

* Scalarization Stage

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer

39

Scalarization Overview

Eliminates vector operations from the source function
¢ Vector types used likely to be narrower than the native SIMD width

To be combined with packetization
— Generate vector instructions with the native SIMD width

¢ On its own, does not change the the behaviour of the code

Cowtrol
| SN PI’QPOLI’C Flow
Cowversion

Packet H Opts |—% VF,
N

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer

40

Scalarization Example

e Example: Extract audio samples from left and right channels, scale by 2
¢ Scalarizing n-element loads and stores introduces a stride of n
— Results in interleaved loads and stores after packetization

Before Scalarization (fragment): After Scalarization (reconstructed):
int2 *src, int *left, int *right; int2 *src, int *left, int *right;
int tid = get_global_id(©@); int tid = get_global_id(®);

int *srcScalar = ((int *)src);
int2 sample = src[tid]; int samplelLeft = srcScalar[(tid * 2) + 0];
int sampleRight = srcScalar[(tid * 2) + 1];

left[tid] = (sample.x << 1); left[tid] = (sampleLeft << 1);
right[tid] = (sample.y << 1); right[tid] = (sampleRight << 1);

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer 41

Part 2: Implementing a SPMD Vectorizer

* Control Flow Conversion Stage

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Part 2: Implementing a SPMD Vectorizer

42

Control Flow Conversion: Overview

¢ Linearizes functions that have divergent control flow

— Conversion from control flow to data flow
— All basic blocks are executed

— Program semantics are preserved using predication (masking)

* Why is it needed?

— SIMD unit does not support 'vector' (divergent) branches

— Single program counter per SIMD group

¢ Requires some passes to be run in the 'Prepare’ stage

— Functions should have a single return block
— Loops should be in 'simple form'

F —| Prepare

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Cowntrol
Flow
Cowversion

/l\

N

Packet VF,

Part 2: Implementing a SPMD Vectorizer

43

Control Flow Conversion: if

* Divergent branch condition: cond
¢ |nstruction with side-effects: 1load

kernel void copy_if_even(int *src, int *dst) {
int tid = get_global id(®@);
int cond = (tid & 1) == 0;
int result;

if (cond) {
result = src[tid];
} else {
result = -1;
}
dst[tid] = result;
)

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

end

Part 2: Implementing a SPMD Vectorizer

44

Control Flow Conversion: Main Steps

¢ Divergence Analysis
e Generate Masks
¢ Freeze Loop Live Variables

e Apply Masks
— Instructions with side-effects

e Convert Phi Nodes
— Preserves data flow

¢ CFG Linearization

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Part 2: Implementing a SPMD Vectorizer

45

CFG Linearization Overview

¢ Flattens the CFG —-A
— All blocks are executed
— Regardless of branch conditions
T F
* Steps B
— Order blocks ﬂ C N
— Rewrite branches
©
¢ More on this later
D "\
D

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer

46

Basic Divergence Analysis

* Determines which basic blocks need
predication (i.e. are divergent)
* BB is divergent if:
— Any predecessor has a branch with a

varying condition

Any predecessor is divergent (naive)

* Process:

Pierre-André Saulais

Start with the entry BB

Mark successors divergent or not
Visit all successors recursively
Visit each BB only once (cycles)

, <pierre-andre@codeplay.com>, Codeplay Software

Yocond = ...
br %cond,

%B, %C

%c = -1
br label %D

%b = load
br label %D

%ox = phi
[%b, B],
[%c, C]

store %x

Part 2: Implementing a SPMD Vectorizer

47

Mask Generation

Mask: N-bit field (1-bit pre-packetization)
— Per-instance, 'active' bit for predication

Each edge A — B has a mask: my_,p
— Which lanes take the branch to B?
- My_p =my N bcondy g
— Given branch condition bcond 4_,5

Each block B has an entry mask: mp

— Which lanes execute B?
n

- Mp = _U0 Mp,—B
=

— Given predecessors P, -+ P,

Start by generating return mask mp
— Depends on all other masks

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

%WLB
br label %D

Part 2: Implementing a SPMD Vectorizer

o
/uVVLc

br label %D

48

Applying Masks

Such instructions are predicated using mg
— I has side-effects for lane L if mg[L] is true

Each block B is executed regardless of whether F executes it or not

Each instruction I that has side-effects need 'guarding'

Loads and stores are turned into masked loads and stores
Calls to functions with side-effects: mp is passed as an argument
Floating-point instructions that raise exceptions (e.g. DIVO)

e Unsupported masked operations can be expanded
— For each lane L, generate: if (mg[L]) { V, =1,(.); }

— Need to create many basic blocks

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Part 2: Implementing a SPMD Vectorizer

49

Phi Conversion

e A phi node:

— Takes incoming blocks F, -+ B,, values V -+ 1,
— Evaluates to I} if the incoming block was P,

¢ Does not work after linearization

— Each block B has a single predecessor after linearization
— Actual incoming block: find P, so that mp, _ is true

* Need to convert phi nodes into n select instructions
= Usingmp _p---mp,__p toselectV from I --- 1,

%cmp = ...
br i1 %cmp, label %B, label %C

%x = load i32* %idx
br label %C

%v = phi i32 [%x, %B], [-1, %A]

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

%cmp = ... // = mAB = mB = mBC
br label %B

%x = masked_load i32* %idx, il %cmp
br label %C

%v = select il %cmp, i32 %x, i32 -1

Part 2: Implementing a SPMD Vectorizer 50

CFG Conversion Result: if

define void @__v4_copy_if_even(i32* %in, i32* %out) {
entry:
%call = call spir_func i64 @get_global_id(i32 0)
%.splatinsert = insertelement <4 x i64> undef, i64 %call, i32 @
%.splat = shufflevector <4 x i64> %.splatinsert, <4 x i64> undef, <4 x 132> zeroinit
%0 = add <4 x i64> %.splat, <i64 @, i64 1, i64 2, i64 3>
%andl = and <4 x i64> %@, <i64 1, i64 1, i64 1, i64 1>
%cmp2 = icmp eq <4 x i64> %andl, zeroinitializer

; if.then:
%arrayidx = getelementptr inbounds i32* %in, i64 %call
%1 = call <4 x 132> @masked_load4(i32* %arrayidx, <4 x il> %cmp2)

; if.end:
%2 = select <4 x il> %cmp2, <4 x 132> %1, <4 x i32> <i32 -1, i32 -1, i32 -1, i32 -1>
%arrayidxl = getelementptr inbounds i32* %out, i64 %call
%3 = bitcast i32* %arrayidxl to <4 x i32>*
store <4 x 132> %2, <4 x i32>* %3, align 4
ret void

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer 51

Control Flow Conversion: Loops

¢ More difficult to convert
¢ More masks to compute

¢ Loop condition may be varying

kernel void while_loop(int *src,
int *dst,
int step) {
int tid = get_global_id(9);
int x = src[tid];
while (x < 0) {
X += step;

}
dst[tid] = x;

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Part 2: Implementing a SPMD Vectorizer

52

Loop Exit and Active Masks

¢ Different instances may iterate a different number of times

— Because the loop condition is varying

— Keep iterating as long as any instance is inside the loop

* Loop Exit mask m,,;¢

— Keeps track of which instances exited the loop

— Used as entry mask for loop exits (mp)

— Needs a phi node since this changes over iterations

* Loop Active mask M, ¢ive

— Mactive = Mheader N Mexit

— True: Branch from loop latch L back to loop header H

— False: Exit the loop from loop latch L

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Part 2: Implementing a SPMD Vectorizer

53

Freezing Loop Live Variables

e Variables that are either:
— Used in a subsequent loop iteration (through a phi node)
— Used outside of the loop
— In the example: x
¢ Once an instance exits, need to freeze live variables
— Otherwise it will have the wrong value after the loop

Create a select instruction X,y that returns either:
— The new value from this iteration x,,,,, (instance is active)
— The value from the previous iteration x,.¢, (instance exited)
— mg selects the right value, where B contains x

Replace all uses of xye, With Xfr626n

Replace outside-loop uses of xp,,¢y, With Xf1zen
— This happens in 'while' and 'for' loops

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer 54

Loop Execution Example

Execute the loop header H
= Meyit < Meyit U (xprev = O)
— Mgctive < mentry N Mgyt

Execute the loop body L
~ Xnew < Xprev + 2
¢ Freeze live value x

- xfrozen o= SeleCt(mactive'xnew'xprev)

Branch to H if any(mgctipe), OF exit loop to D

Iteration xprev Mexit | Mactive Xnew xfrozen
0] 71-2|-3|-5 o | melxe | 9|0 |-1[-3|7|0]-3
1 7|1 0|-3]-3 ° 9|12|-1|-1(7|0]|-3
2 7|1 0]-3]-1 ° 9|12|-1|1(7|0]|-3
3 7|1 03] 1 o0 9|12|-1| 3(7|0]-3

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Part 2: Implementing a SPMD Vectorizer

Basic Linearization: Graph Creation

* Create a CFG-like graph

— Where a loop's blocks are replaced by a single loop node

— The loop node (S) contains a sub-graph

¢ Sub-graphs can contain blocks and loops
— Allows recursive processing of loop nests

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Part 2: Implementing a SPMD Vectorizer

56

Basic Linearization: Block Ordering

¢ Bottom-up topological sort of the graph
— Result is an ordered list of graph nodes
— Loop nodes expand to sub-lists
— Topological sort of loop nodes starts at
the loop latch
* Naive approach that linearizes everything
— Increases register pressure

* Only works for reducible control flow

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

= HEk>]
)

Part 2: Implementing a SPMD Vectorizer

(o] [E=] {2

57

Basic Linearization: Branch Rewriting

Visit each block in the ordered list

Rewrite their branch target

For most blocks:
— Always branch to the next block in the list

For the loop latch L:
— How many active instances in the loop?
— = 1: Branch to the loop header H
— 0: Branch to next block
— Uses any(mactive)

CFG conversion is done

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Part 2: Implementing a SPMD Vectorizer

58

Conclusion

¢ Explained basic concepts

— Data-parallel execution model
Whole-function vectorization

N instances of every instruction
Uniform vs varying values
Divergent control flow, masking

* Many things were not covered in this talk

2D, 3D iteration spaces
Loops with multiple exits
More advanced analyses
Optimizations

¢ Should be enough to create a functional vectorizer

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Conclusion

59

References and Resources

Automatic Packetization [Ralf Karrenberg, Saarland University '09]
Whole-Function Vectorization (Ralf Karrenberg, Sebastian Hack, CGO '11)
Intel® OpenCL™ Implicit Vectorization Module [Nadav Rotem, LLVM '11]

Branching in Data-Parallel Languages using Predication with LLVM [Marcello Maggioni,

EuroLLVM '14]

Exploring the Design Space of SPMD Divergence Management on Data-Parallel
Architectures [Yunsup Lee et al., MICRO '14]

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

CUDA is a trademark and/or registered trademark of NVIDIA Corporation in the U.S. and/or other countries.

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion

60

Thank you!

* Q&A
— Happy to answer questions by email too: pierre-andre@codeplay.com

* Happy vectorizing!

<090 0GOS S (08,

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion

61

Part 3

Going Further

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Conclusion

62

SIMD Width Detection

* Basic process

— Visit varying nodes

— Record width W of widest type used

— Given vector register width V, N = %
¢ Improve analysis using register pressure information

— Max register usage < %? Multiply N by p

— Result in p times the number of native vector operations
e Use a cost model

— Your target may only support some vector operations on specific widths

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion

63

Instantiation

e Not all instructions can be packetized
— External function with side-effcts (e.g. printf)
— Atomic builtins
* Solution: instantiate the instruction for all lanes (i € [0; N))
— Duplicate scalar instructions N times
— Replace tid with tid + i (e.g. calls to get_global_id)
— Need to extract packetized operands N times
¢ Happens during the packetization stage
¢ Can be an alternative to scalarization

— Instantiation then becomes a stage of its own
— Analysis determines when to instatiate, when to scalarize

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion

64

Packetizing Builtin Function Calls

e Requires a 'builtin function database'
— Which functions are builtins
— Argument types, unless encoded in the mangled function name (e.g. OpenCL)
— Properties (e.g. returns an item ID, has side-effects, pointer return, etc)

Map scalar builtin to vector equivalent (e.g. tan(float) to tan(float4))
— And the other way around, for scalarization
— Assumes the equivalent builtin is already packetized
¢ Simply create call to vector equivalent with packetized operands
¢ However not all OpenCL builtins have vector equivalents (e.g. float dot(float4))
— Caninline these builtins before scalarization

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion 65

Packetizing Builtin Functions

Clone builtin function, updating signature (vector return value, arguments)

¢ Generate argument placeholders (see example below), replacing all uses

UVA treats arguments as roots

¢ ret instructions are leaves

Packetizing a placeholder replaces extractelement by the argument

IR after cloning, before packetization:

define <4 x i32> @__v4_ Z7isequalff(<4 x float> %x, <4 x float> %y) {
entry:
%placeholder_x = extractelement <4 x float> %x, i32 ©
%placeholder_y = extractelement <4 x float> %y, i32 ©
%cmp.i = fcmp oeq float %placeholder_x, %placeholder_y
%conv.i = zext il %cmp.i to i32
ret i32 %conv.i

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion

66

Packetizing User Functions (No Side-Effects)

e Vectorizer has no intrinsic knowledge of which arguments are varying

— Need to analyze this for each call site
— Generate a packetized function for each combination

¢ Arguments may also be uniform (e.g. arrays)

e Otherwise similar to packetizing builtins

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion

67

Packetizing User Functions (Side-Effects)

* The vectorized function needs to take an extra mask argument, M1y,
— Determines which lanes are enabled when entering the function

* When applying masks, pass mg to function calls
— Where B is the block where the call instruction is

e Might be simpler to just inline such calls

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion

68

CFG Specialization

* Duplicate part of the CFG

— With the assumption that all lanes are enabled
— Avoids CFG conversion and predication for the specialized part
— Increases code size

¢ Need to generate an extra branch (guard) to specialized code
- eg 'b il all(my_sp), label %Bi,.., label %B’

kernel void convolution(float *src, float *dst) {
int x = get_global id(@);
int width = get_global_size(©);
float sum = 0.0f;
if ((x >= FILTER_SIZE) & & (x < (width - FILTER_SIZE))) {
/* Loop that computes sum, using an uniform condition */

}

dst[x] = sum;

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion

69

CFG Conversion: Single Lane

e Branch always taken by a single lane
- eg 'if (tid == @) { /* write back result */ }'
— Often used with reductions

* No need for CFG conversion
— Keep the conditional branch

* No need for packetization

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion

70

Interleaved Memory Optimizations

¢ Scalarizing vector loads and stores results in many interleaved loads and stores
* Most targets do not support this efficiently
— Resulting in even more scalar loads, stores, vector extractions and insertions

¢ Grouping these instructions often helps

— ARM supports vld.[2-4] and vst.[2-4] for some vector types
— Can replace n-group with n memory operations and n X n-transposition

To find groups, look for a common base pointer and increasing offsets

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion

71

AoS to SoA Conversion

Scalarizing then packetizing vector loads and stores implicitely performs
Array-of-Structures to Structure-of-Arrays conversion

Common 'load(s)-compute-store(s)' pattern inside kernels

— Computation is done per-element, without shuffling elements
— Interleaved loads and stores generated due to scalarization
— Can replace with regular vector loads and stores to avoid the conversion

Analysis needed to show that no shuffling or single-lane accesses occur

Resulting code likely to be much more friendly to most targets

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion

72

Implementation Strategy

¢ Create test kernels

— Start with very simple kernels (e.g. copy buffer, add two buffers)
— Gradually add more features (e.g. non-sequential memory accesses, vector instructions,
etc)

* Suggested implementation order

— Preparation and packetization first (required for simplest kernels)
— Then easier features: builtins, memory addressing, scalarization, instantiation
— More complex features last: control flow, optimizations

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion 73

Scalarization Process

* Look for vector varying instructions such as:

— Leaves that define vector values, vector stores
— Vector extractions
— Vector -> scalar bitcasts

e Recursively scalarize until we reach a scalar value

— Operands before instructions
— Re-create instructions for each vector element
— Vector lane # SIMD instance!

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software

Conclusion

74

Scalarization Example

After Scalarization:

kernel void extract_lr(int2 *src, int *left, int *right) {
int tid = get_global_id(®);
int sampleLeft = *((int *)&src[tid] + 9);
int sampleRight = *((int *)&src[tid] + 1);
left[tid] = (sampleLeft >> 1);
right[tid] = (sampleRight >> 1);
}

After Packetization:

kernel void extract_lr(int2 *src, int *left, int *right) {
int tid = get_global_id(®@);
int4 samplesLeft = interleaved_load_int4((int *)&src[tid] + 0, 2);
int4 samplesRight = interleaved_load_int4((int *)&src[tid] + 1, 2);
vstore4(samplesLeft >> 1, tid, (int *)left);
vstore4(samplesRight >> 1, tid, (int *)right);

Pierre-André Saulais , <pierre-andre@codeplay.com>, Codeplay Software Conclusion 75

	Part 1: Background
	SPMD Execution Model
	Vectorization

	Part 2: Implementing a SPMD Vectorizer
	Overview
	Packetization Stage
	Scalarization Stage
	Control Flow Conversion Stage

