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An LLVM developer setup

Modern C++ development tools

Arnaud de Grandmaison, FOSDEM 2016
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Foreword

● Goals :
● Provide an overview of available tools for C++ development
● Make you aware these exists.

● That's the first step to start using them :)

● Targeted audience: non LLVM developers

● I did not write those tools, all credits goes to their 
authors
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The LLVM project

● http://www.llvm.org

● No longer an acronym !

● Can refer to both the umbrella project and the core libraries.

● A modular collection of reusable components around compilation :
● LLVM Core : intermediate representation
● Clang : a compiler
● lldb : a debugger
● lld : linker
● libc++ : a standard library

● BSD style license

http://www.llvm.org/
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LLVM community

● A vibrant community !

● Lots of very different usages of the project

● 2 developers meeting per year:
● in Europe around March
● in the US around November

● Regular social events:
● Cambridge/UK
● Paris/France
● Zürich/Switzerland
● Bay area/US
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LLVM

● Core libraries:
● Intermediate representation (IR)
● Mid-end optimizers
● Code generation
● Machine optimizations
● Object file support
● JIT

● Some stats (from openhub) :
● Mostly written in C++11
● ~ 1.5MLoC
● ~ 130 contributors
● ~ 1200 commits / month

● Provides backends for x86, ARM, AArch64, MIPS, PowerPC, …
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Clang

● A C/C++/ObjC compiler
● Built on top of the LLVM core libraries
● Provides a collection of reusable (and reused!) components :

● Libclang, a stable high level C interface to clang
● Or the C++ clang libraries if full control over the AST is needed

● Some stats (from openhub) :
● Mostly C++11
● ~ 1+ M LoC
● ~ 90 contributors
● ~ 500 commits / month

● Platforms : Linux, Windows, MacOS, FreeBSD
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Other projects

● Lldb :
● A debugger, built as a set of reusable components
● Reuse other components, like Clang's parser
● Platforms : MacOS, iOS, Linux, FreeBSD, Windows

● Libc++ :
● a new implementation of the C++ standard library, targeting C++11 and beyond

● Lld :
● A set of modules for creating linker tools
● Supports ELF, Mach-O and PE/COFF



  

10 / 25

Agenda

● Overview of the LLVM project

● LLVM development setup

● Available tools for developers



  

11 / 25

LLVM development

● Builds with itself:) and recent enough versions of gcc
● decent C++11 support required

● Configuration stage : Cmake (configure being deprecated)

● Build : ninja / make

● Test:
● Unit tests
● Testsuite
● Buildbot setup, running all kinds of test on all kind of platforms



  

12 / 25

Tips & tricks

● Cmake ≥ 3.4 have good CCache support
● Use DCMAKE_${LANG}_COMPILER_LAUNCHER:...

● For DEBUG builds, you may want to use shared libs : 
● DBUILD_SHARED_LIBS:BOOL=ON

● Unless you have a lot of memory

● If you wish to build yourself the tools advertized in this 
presentation, you'll need llvm, clang, compiler-rt and clang-
tools-extra.
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LLVM development

● Compilation database :
● Optionally generated by cmake
● Contains compile flags for each source file in the 

project
● JSON format
● Used by a number of llvm tools
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Sanitizers

● Also available with gcc

● Valgrind is a great tool
● but it is slow

● Sanitizers provide fast and focused runtime checks, inserted by the 
compiler.

● Address sanitizer : addressability issues
● Thread sanitizer : data races & deadlocks
● Memory sanitizer : uninitialized memory
● Leak sanitizer : memory leaks 



  

16 / 25

Sanitizers

● When to use them ?

● Always !
● Well, almost…

● As part of the continuous integration testing
● For example LLVM has builders with the sanitizers on

● When you face a strange bug, and your developer's 
experience/intuition suggests some class of bugs
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Using ASan

● Add fsanitize=address to your compilation flags

● Recompile
● Et voilà !
● Hint:

● To get a workable output, you probably want to use g fnoomitframepointer

●  Demo

● Asan can also perform some more detailed / expensive checks
● Those need to be explicitly enabled, either at compile time or with an env variable
● Read the doc to learn about available checks

● Demo
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Fuzzing

● As developers, we of course pay great attention to make sure 
we covered all cases, exceptional situations, and ill-formed 
inputs

● But we fail at it –- let's be honest ;)
● Consequences can be really bad

● remember openssl / heartbleed ?

● Some bad guys are actively trying ill-formed inputs

● Careful programming and code reviews can help
● But if the domain is not trivial, bugs will slip through
● And even when it's trivial...
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Fuzzing

● Fuzzing is a testing technique to provide random inputs to a program, 
possibly starting from a corpus of known inputs (i.e. seeds)

● LLVM provides libFuzzer:
● Intended for in-process coverage-guided testing of other libraries

● Typical workflow:
● Mix and match different build modes (asan, msan, …) and optimization levels (-

O{0,1,2,…})
● Collect an initial corpus of inputs
● Run the fuzzer
● And watch it catch bugs...
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Fuzzing

● My piece of advice:
● Fuzzing is an incredibly efficient technique
● Do a favour to your project and your users

● And yourself ultimately

● Use some fuzz testing, libFuzzer or any other 
available technology, including your own if you are 
in specific domain.
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Code completion

● Stop using weird heuristics, use a real compiler !

● clang_complete:
● vim plugin
● https://github.com/Rip-Rip/clang_complete

● YouCompleteMe
● https://github.com/Valloric/YouCompleteMe
● Vim, emacs, sublime text, … plugin

● Both are libclang based
● Demo

https://github.com/Rip-Rip/clang_complete
https://github.com/Valloric/YouCompleteMe
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Code formatting

● Formatting :
● is more than just indentation
● is similar to what text processing applications like TeX are doing.

● Formatting is important
● Just like comments ;)
● We all know about this
● And it can end up in a religious wars

● Formatting is just boring… 
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clangformat

● Supports formatting C, C++, Java, JavaScript, Objective-C, Protobuf code

● Not based on Clang :(
● But darn useful !

● VIM & Emacs integration

● Configuration:
● Can use a predefined style, in a .clangformat project file

● Or just guess from the surrounding code

● Demo
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clangtidy

● Clang-based C++ linter tool (and much more)

● >50 checks
● Readability, efficiency, correctness, modernize, …
● Can automatically fix the code in many cases
● “Easy” to add your own domain specific checks

● Once you have a fairly good grasp of clang's AST

● Watch the presentation from Manuel Klimek & Daniel Jasper at the US LLVM 
dev conference : 
https://www.youtube.com/watch?v=dCdOaL3asx8&index=18&list=PL_R5A0lG
i1AA4Lv2bBFSwhgDaHvvpVU21

● Demo

https://www.youtube.com/watch?v=dCdOaL3asx8&index=18&list=PL_R5A0lGi1AA4Lv2bBFSwhgDaHvvpVU21
https://www.youtube.com/watch?v=dCdOaL3asx8&index=18&list=PL_R5A0lGi1AA4Lv2bBFSwhgDaHvvpVU21
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Thank you !
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