
1

1 / 25

An LLVM developer setup

Modern C++ development tools

Arnaud de Grandmaison, FOSDEM 2016

2 / 25

Foreword

● Goals :
● Provide an overview of available tools for C++ development
● Make you aware these exists.

● That's the first step to start using them :)

● Targeted audience: non LLVM developers

● I did not write those tools, all credits goes to their
authors

3 / 25

Agenda

● Overview of the LLVM project

● LLVM development setup

● Available tools for developers

4 / 25

Agenda

● Overview of the LLVM project

● LLVM development setup

● Available tools for developers

5 / 25

The LLVM project

● http://www.llvm.org

● No longer an acronym !

● Can refer to both the umbrella project and the core libraries.

● A modular collection of reusable components around compilation :
● LLVM Core : intermediate representation
● Clang : a compiler
● lldb : a debugger
● lld : linker
● libc++ : a standard library

● BSD style license

http://www.llvm.org/

6 / 25

LLVM community

● A vibrant community !

● Lots of very different usages of the project

● 2 developers meeting per year:
● in Europe around March
● in the US around November

● Regular social events:
● Cambridge/UK
● Paris/France
● Zürich/Switzerland
● Bay area/US

7 / 25

LLVM

● Core libraries:
● Intermediate representation (IR)
● Mid-end optimizers
● Code generation
● Machine optimizations
● Object file support
● JIT

● Some stats (from openhub) :
● Mostly written in C++11
● ~ 1.5MLoC
● ~ 130 contributors
● ~ 1200 commits / month

● Provides backends for x86, ARM, AArch64, MIPS, PowerPC, …

8 / 25

Clang

● A C/C++/ObjC compiler
● Built on top of the LLVM core libraries
● Provides a collection of reusable (and reused!) components :

● Libclang, a stable high level C interface to clang
● Or the C++ clang libraries if full control over the AST is needed

● Some stats (from openhub) :
● Mostly C++11
● ~ 1+ M LoC
● ~ 90 contributors
● ~ 500 commits / month

● Platforms : Linux, Windows, MacOS, FreeBSD

9 / 25

Other projects

● Lldb :
● A debugger, built as a set of reusable components
● Reuse other components, like Clang's parser
● Platforms : MacOS, iOS, Linux, FreeBSD, Windows

● Libc++ :
● a new implementation of the C++ standard library, targeting C++11 and beyond

● Lld :
● A set of modules for creating linker tools
● Supports ELF, Mach-O and PE/COFF

10 / 25

Agenda

● Overview of the LLVM project

● LLVM development setup

● Available tools for developers

11 / 25

LLVM development

● Builds with itself:) and recent enough versions of gcc
● decent C++11 support required

● Configuration stage : Cmake (configure being deprecated)

● Build : ninja / make

● Test:
● Unit tests
● Testsuite
● Buildbot setup, running all kinds of test on all kind of platforms

12 / 25

Tips & tricks

● Cmake ≥ 3.4 have good CCache support
● Use DCMAKE_${LANG}_COMPILER_LAUNCHER:...

● For DEBUG builds, you may want to use shared libs :
● DBUILD_SHARED_LIBS:BOOL=ON

● Unless you have a lot of memory

● If you wish to build yourself the tools advertized in this
presentation, you'll need llvm, clang, compiler-rt and clang-
tools-extra.

13 / 25

LLVM development

● Compilation database :
● Optionally generated by cmake
● Contains compile flags for each source file in the

project
● JSON format
● Used by a number of llvm tools

14 / 25

Agenda

● Overview of the LLVM project

● LLVM development setup

● Available tools for developers

15 / 25

Sanitizers

● Also available with gcc

● Valgrind is a great tool
● but it is slow

● Sanitizers provide fast and focused runtime checks, inserted by the
compiler.

● Address sanitizer : addressability issues
● Thread sanitizer : data races & deadlocks
● Memory sanitizer : uninitialized memory
● Leak sanitizer : memory leaks

16 / 25

Sanitizers

● When to use them ?

● Always !
● Well, almost…

● As part of the continuous integration testing
● For example LLVM has builders with the sanitizers on

● When you face a strange bug, and your developer's
experience/intuition suggests some class of bugs

17 / 25

Using ASan

● Add fsanitize=address to your compilation flags

● Recompile
● Et voilà !
● Hint:

● To get a workable output, you probably want to use g fnoomitframepointer

● Demo

● Asan can also perform some more detailed / expensive checks
● Those need to be explicitly enabled, either at compile time or with an env variable
● Read the doc to learn about available checks

● Demo

18 / 25

Fuzzing

● As developers, we of course pay great attention to make sure
we covered all cases, exceptional situations, and ill-formed
inputs

● But we fail at it –- let's be honest ;)
● Consequences can be really bad

● remember openssl / heartbleed ?

● Some bad guys are actively trying ill-formed inputs

● Careful programming and code reviews can help
● But if the domain is not trivial, bugs will slip through
● And even when it's trivial...

19 / 25

Fuzzing

● Fuzzing is a testing technique to provide random inputs to a program,
possibly starting from a corpus of known inputs (i.e. seeds)

● LLVM provides libFuzzer:
● Intended for in-process coverage-guided testing of other libraries

● Typical workflow:
● Mix and match different build modes (asan, msan, …) and optimization levels (-

O{0,1,2,…})
● Collect an initial corpus of inputs
● Run the fuzzer
● And watch it catch bugs...

20 / 25

Fuzzing

● My piece of advice:
● Fuzzing is an incredibly efficient technique
● Do a favour to your project and your users

● And yourself ultimately

● Use some fuzz testing, libFuzzer or any other
available technology, including your own if you are
in specific domain.

21 / 25

Code completion

● Stop using weird heuristics, use a real compiler !

● clang_complete:
● vim plugin
● https://github.com/Rip-Rip/clang_complete

● YouCompleteMe
● https://github.com/Valloric/YouCompleteMe
● Vim, emacs, sublime text, … plugin

● Both are libclang based
● Demo

https://github.com/Rip-Rip/clang_complete
https://github.com/Valloric/YouCompleteMe

22 / 25

Code formatting

● Formatting :
● is more than just indentation
● is similar to what text processing applications like TeX are doing.

● Formatting is important
● Just like comments ;)
● We all know about this
● And it can end up in a religious wars

● Formatting is just boring…

23 / 25

clangformat

● Supports formatting C, C++, Java, JavaScript, Objective-C, Protobuf code

● Not based on Clang :(
● But darn useful !

● VIM & Emacs integration

● Configuration:
● Can use a predefined style, in a .clangformat project file

● Or just guess from the surrounding code

● Demo

24 / 25

clangtidy

● Clang-based C++ linter tool (and much more)

● >50 checks
● Readability, efficiency, correctness, modernize, …
● Can automatically fix the code in many cases
● “Easy” to add your own domain specific checks

● Once you have a fairly good grasp of clang's AST

● Watch the presentation from Manuel Klimek & Daniel Jasper at the US LLVM
dev conference :
https://www.youtube.com/watch?v=dCdOaL3asx8&index=18&list=PL_R5A0lG
i1AA4Lv2bBFSwhgDaHvvpVU21

● Demo

https://www.youtube.com/watch?v=dCdOaL3asx8&index=18&list=PL_R5A0lGi1AA4Lv2bBFSwhgDaHvvpVU21
https://www.youtube.com/watch?v=dCdOaL3asx8&index=18&list=PL_R5A0lGi1AA4Lv2bBFSwhgDaHvvpVU21

25 / 25

Thank you !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

