
LLV8: Adding LLVM as an extra
JIT tier to V8 JavaScript engine

Dmitry Melnik
dm@ispras.ru

September 8, 2016

Challenges of JavaScript JIT compilation

• Dynamic nature of JavaScript
• Dynamic types and objects: at run time new classes can be

created, even inheritance chain for existing classes can be
changed

•  eval(): new code can be created at run time

• Managed memory: garbage collection

• Ahead-of-time static compilation almost impossible
(or ineffective)

• Simple solution: build IR (bytecode, AST) and do
interpretation

Challenges of JavaScript JIT compilation

• Optimizations should be performed in real-time
•  Optimizations can’t be too complex due to time and memory

limit
•  The most complex optimizations should run only for hot places
•  Parallel JIT helps: do complex optimizations while executing

non-optimized code

• Rely on profiling and speculation to do effective
optimizations

•  Profiling -> speculate “static” types, generate statically typed
code

•  Can compile almost as statically typed code, as long as
assumptions about profiled types hold

• Multi-tier JIT is the answer
•  latency / throughput tradeoff

JS Engines

• Major	Open-Source	Engines:	
•  JavaScriptCore	(WebKit)	

•  Used	in	Safari	(OS	X,	iOS)	and	other	WebKit-based	browsers	(Tizen,	
BlackBerry)	

•  Part	of	WebKit	browser	engine,	maintained	by	Apple	
• V8	(Blink)	

•  Used	in	Google	Chrome,	Android	built-in	browser,	Node.js	
•  Default	JS	engine	for	Blink	browser	engine	(iniPally	was	an	opPon	to	
SFX	in	WebKit),	mainly	developed	by	Google	

• Mozilla	SpiderMonkey	
•  JS	engine	in	Mozilla	FireFox	

•  SFX	and	V8	common	features	
•  MulP-level	JIT,	each	level	have	different	IRs	and	complexity	of	
opPmizaPons	

•  Rely	on	profiling	and	speculaPon	to	do	effecPve	opPmizaPons	
•  Just	about	2x	slower	than	naPve	code	(on	C-like	tests,	e.g.	SunSpider	
benchmark)	

JavaScriptCore Multi-Tier JIT Architecture

4: FTL (LLVM*) JIT

JS Source

2: Baseline JIT

AST

DFG Nodes 3: DFG Speculative JIT

Native Code
(Baseline)

OSREntry
Profile information (primarily, type info)
collected during execution on levels 1-2

Internal
representation:

1: LLINT interpreter
Bytecode

LLVM
bitcode

Native Code
(DFG)

Native Code
(LLVM)

OSREntry
types OSRExit

When the executed code becomes “hot”, SFX switches Baseline JIT è DFG è LLVM using
On Stack Replacement technique

* Currently replaced by B3 (Bare Bones Backend)

On-Stack Replacement (OSR)

o  At different JIT tiers variables may be
speculated (and internally represented) as
different types, may reside in registers or
on stack

o  Differently optimized code works with
different stack layouts (e.g. inlined
functions have joined stack frame)

o  When switching JIT tiers, the values
should be mapped to/from registers/stack
locations specific to each JIT tier code

JSC tiers performance comparison

Test

V8-richards	speedup,	Cmes Browsermark	speedup,	Cmes

RelaCve	to	
interpreter

RelaCve	to	
prev.	Cer

RelaCve	to	
LLINT

RelaCve	to	
prev.	Cer

JSC	interpreter	 1.00	 -	 n/m	 -	
LLINT	 2.22	 2.22	 1.00	 -	
Baseline	JIT	 15.36	 6.90	 2.50	 2.5	
DFG	JIT	 61.43	 4.00	 4.25	 1.7	
Same	code	in	C	 107.50	 1.75	 n/m	 -	

Source Code
(JS)

AST

DFG Nodes

Crankshaft
(optimizing compiler)

Native Code
(Full codegen)

Internal
Representation

Native Code
(Crankshaft)

Hydrogen

Lithium

AST

OSREntry OSRExit

Full codegen
(non-optimizing compiler)

V8 Original Multi-Tier JIT Architecture

Profile information
(primarily, types)
collected during
execution on level 1

When the executed code becomes “hot”, V8 switches Full Codegen è Crankshaft using
On Stack Replacement technique

Currently, V8 also has an interpreter (Ignition) and new JIT (TurboFan)

Source Code
(JS)

AST

DFG Nodes

Crankshaft
(optimizing compiler)

Native Code
(Full codegen)

Internal
Representation

Native Code
(Crankshaft)

Hydrogen

Lithium

AST

OSREntry OSRExit

LLV8
(advanced
optimizations)

LLVM IR Native Code
(LLVM MCJIT)

Full codegen
(non-optimizing compiler)

V8+LLVM Multi-Tier JIT Architecture

Using LLVM JIT is a popular trend

o  Pyston (Python, Dropbox)
o  HHVM (PHP & Hack, Facebook)
o  LLILC (MSIL, .NET Foundation)
o  Julia (Julia, community)

o  JavaScript:
▪  JavaScriptCore in WebKit (JavaScript, Apple)

– Fourth Tier LLVM JIT (FTL JIT)
▪  LLV8 – adding LLVM as a new level of

compilation in Google V8 compiler
(JavaScript, ISP RAS)

o  PostgreSQL + LLVM JIT: ongoing project at ISP
RAS (will be presented at lightning talks)

V8 + LLVM = LLV8

Representation of Integers in V8

o  Fact: all pointers are aligned – their raw
values are even numbers

o  That’s how it’s used in V8:
•  Odd values represent pointers to boxed

objects (lower bit is cleared before actual
use)

•  Even numbers represent small 31-bit
integers (on 32-bit architecture)

•  The actual value is shifted left by 1 bit, i.e.
multiplied by 2

•  All arithmetic is correct, overflows are
checked by hardware

Example (V8’s CrankShaft)

function hot_foo(a, b) {
 return a + b;
}

Example (Native by LLVM JIT)

function hot_foo(a, b) {
 return a + b;
}

Example (Native by LLVM JIT)

function hot_foo(a, b) {
 return a + b;
}

Deoptimization:
go back to 1st-level
Full Codegen
compiler

Not an SMI

Not an SMI

Overflow

Problems Solved

o  OSR Entry
•  Switch not only at the beginning of the function, but

also can jump right into optimized loop body
•  Need an extra block to adjust stack before entering a

loop

o  Deoptimization
•  Need to track where LLVM puts JS vars (registers,

stack slots), so to put them back on deoptimization to
locations where V8 expects them

o  Garbage collector

Deoptimization

o  Call to runtime in deopt blocks is a call to Deoptimizer
(those never return)

o  Full Codegen JIT is a stack machine
o  HSimulate – is a stack machine state simulation
o  We know where Hydrogen IR values will be mapped when

switching back to Full Codegen upon deoptimization
o  Crankshafted code has Translation – a mapping from

registers/stack slots to stack slots. Deoptimizer emits the
code that moves those values

o  To do the same thing in LLV8 info about register allocation
is necessary (a mapping llvm::Value -> register/stack slot)

o  Implemented with stackmap to fill Translation and
patchpoint llvm intrinsics to call Deoptimizer

Garbage collector
•  GC can interrupt execution at certain points

(loop back edges and function calls) and
relocate some data and code

•  Need to map LLVM values back to V8’s
original locations in order for GC to work
(similarly to deoptimization, create StackMaps)

•  Need to relocate calls to all code that could
have been moved by GC (create PatchPoints)

•  Using LLVM’s statepoint intrinsic, which
does both things

ABI
•  Register pinning

•  In V8 register R13 holds a pointer to root objects array, so
we had to remove it from register allocator

•  Special call stack format
•  V8 looks at call stack (e.g. at the
time of GC) and expects it to be in
special format

•  Custom calling conventions

•  To call (and be called from) V8’s JITted functions code, we
had to implement its custom calling conventions in LLVM

…

return address

frame pointer (rbp)

context (rsi)

function (rdi)

…

Example from SunSpider

function foo(b) {
 var m = 1, c = 0;
 while(m < 0x100) {
 if(b & m) c++;
 m <<= 1;
 }
 return c;
}

Iterations x100 x1000
Execution time,
Crankshaft, ms

0.19 1.88

Execution time,
LLV8, ms

0.09 0.54

Speedup, times x2.1 x3.5

function TimeFunc(func) {
 var sum = 0;
 for(var x = 0; x < ITER; x++)
 for(var y = 0; y < 256; y++)

 sum += func(y);
 return sum;
}

result = TimeFunc(foo);

SunSpider test: bitops-bits-in-byte.js

push rbp
mov rbp, rsp
push rsi
push rdi
mov rax, [rbp+0x10]
test al, 1
jne .deopt1

eq ne

shr rax, 0x10
mov edx, 1
xor ebx, ebx

.loop:
cmp edx, 0x100
jge .epilogue

ge l

mov eax, ebx
shl rax, 0x20
mov rsp, rbp
pop rbp
ret 0x10

mov rcx, rax
and ecx, edx
test ecx, ecx
jnz .label

nz z

.label:
mov rcx, rbx
add ecx, 1
jo .deopt2

T F

mov rcx, rbx
jmp .loopend

.loopend:
shl edx, 1
mov rbx, rcx
jmp .loop

push rax
mov rax, [rsp+0x10]
mov ecx,0xbadbeef0
test al,0x1
jne .deopt1

eq ne

mov rdx,rax
shr rdx,0x20
mov rsi,rdx
and rsi,0x1
mov rdi,rax
shr rdi,0x21
and rdi,0x1
add rdi,rsi
mov rsi,rax
shr rsi,0x22
and rsi,0x1
add rsi,rdi
mov rdi,rax
shr rdi,0x23
and rdi,0x1
add rdi,rsi
mov rsi,rax
shr rsi,0x24
and rsi,0x1
add rsi,rdi
shr rax,0x25
and rax,0x1
add rax,rsi
test dl,0x40
je .test

eq ne

.test:
test dl,0x80
je .ret

eq ne

inc rax

.ret:
shl rax,0x20
pop rdx
ret 0x10

inc rax
jo .deopt2

T F

push rbp
mov rbp, rsp
push rsi
push rdi
mov rax, [rbp+0x10]
test al, 1
jne .deopt1

eq ne

shr rax, 0x10
mov edx, 1
xor ebx, ebx

.loop:
cmp edx, 0x100
jge .epilogue

ge l

mov eax, ebx
shl rax, 0x20
mov rsp, rbp
pop rbp
ret 0x10

mov rcx, rax
and ecx, edx
test ecx, ecx
jnz .label

nz z

.label:
mov rcx, rbx
add ecx, 1
jo .deopt2

T F

mov rcx, rbx
jmp .loopend

.loopend:
shl edx, 1
mov rbx, rcx
jmp .loop

push rax
mov rax, [rsp+0x10]
mov ecx,0xbadbeef0
test al,0x1
jne .deopt1

eq ne

mov rdx,rax
shr rdx,0x20
mov rsi,rdx
and rsi,0x1
mov rdi,rax
shr rdi,0x21
and rdi,0x1
add rdi,rsi
mov rsi,rax
shr rsi,0x22
and rsi,0x1
add rsi,rdi
mov rdi,rax
shr rdi,0x23
and rdi,0x1
add rdi,rsi
mov rsi,rax
shr rsi,0x24
and rsi,0x1
add rsi,rdi
shr rax,0x25
and rax,0x1
add rax,rsi
test dl,0x40
je .test

eq ne

.test:
test dl,0x80
je .ret

eq ne

inc rax

.ret:
shl rax,0x20
pop rdx
ret 0x10

inc rax
jo .deopt2

T F

push rbp
mov rbp, rsp
push rsi
push rdi
mov rax, [rbp+0x10]
test al, 1
jne .deopt1

eq ne

shr rax, 0x10
mov edx, 1
xor ebx, ebx

.loop:
cmp edx, 0x100
jge .epilogue

ge l

mov eax, ebx
shl rax, 0x20
mov rsp, rbp
pop rbp
ret 0x10

mov rcx, rax
and ecx, edx
test ecx, ecx
jnz .label

nz z

.label:
mov rcx, rbx
add ecx, 1
jo .deopt2

T F

mov rcx, rbx
jmp .loopend

.loopend:
shl edx, 1
mov rbx, rcx
jmp .loop

push rax
mov rax, [rsp+0x10]
mov ecx,0xbadbeef0
test al,0x1
jne .deopt1

eq ne

mov rdx,rax
shr rdx,0x20
mov rsi,rdx
and rsi,0x1
mov rdi,rax
shr rdi,0x21
and rdi,0x1
add rdi,rsi
mov rsi,rax
shr rsi,0x22
and rsi,0x1
add rsi,rdi
mov rdi,rax
shr rdi,0x23
and rdi,0x1
add rdi,rsi
mov rsi,rax
shr rsi,0x24
and rsi,0x1
add rsi,rdi
shr rax,0x25
and rax,0x1
add rax,rsi
test dl,0x40
je .test

eq ne

.test:
test dl,0x80
je .ret

eq ne

inc rax

.ret:
shl rax,0x20
pop rdx
ret 0x10

inc rax
jo .deopt2

T F

push rbp
mov rbp, rsp
push rsi
push rdi
mov rax, [rbp+0x10]
test al, 1
jne .deopt1

eq ne

shr rax, 0x10
mov edx, 1
xor ebx, ebx

.loop:
cmp edx, 0x100
jge .epilogue

ge l

mov eax, ebx
shl rax, 0x20
mov rsp, rbp
pop rbp
ret 0x10

mov rcx, rax
and ecx, edx
test ecx, ecx
jnz .label

nz z

.label:
mov rcx, rbx
add ecx, 1
jo .deopt2

T F

mov rcx, rbx
jmp .loopend

.loopend:
shl edx, 1
mov rbx, rcx
jmp .loop

push rax
mov rax, [rsp+0x10]
mov ecx,0xbadbeef0
test al,0x1
jne .deopt1

eq ne

mov rdx,rax
shr rdx,0x20
mov rsi,rdx
and rsi,0x1
mov rdi,rax
shr rdi,0x21
and rdi,0x1
add rdi,rsi
mov rsi,rax
shr rsi,0x22
and rsi,0x1
add rsi,rdi
mov rdi,rax
shr rdi,0x23
and rdi,0x1
add rdi,rsi
mov rsi,rax
shr rsi,0x24
and rsi,0x1
add rsi,rdi
shr rax,0x25
and rax,0x1
add rax,rsi
test dl,0x40
je .test

eq ne

.test:
test dl,0x80
je .ret

eq ne

inc rax

.ret:
shl rax,0x20
pop rdx
ret 0x10

inc rax
jo .deopt2

T F

Original V8 CrankShaft’s code

LLV8-generated code
(LLVM applied loop
unrolling)

Optimization Issues / Ideas

•  Integer overflow checks
•  Loop optimizations: vectorization doesn’t work (and

deoptimization info doesn’t support AVX registers)
•  Sometimes v8 cannot prove overflow is not possible -> llv8

generates add.with.overflow -> llvm is unable to prove there's
no overflow either -> this prevents optimizations, e.g.:
for (var i = 0; i < 1000; i++) {
 x1 = x1 + i; // generates add.with.overflow

 x2 = (x2 + i) & 0xffffffff; // regular add
}
•  Using in above loop x2 only would result in LLVM managing to evaluate

whole loop to a constant:
 movabs rax, 0x79f2c00000000 ;; Smi

• Branch probabilities based on profiling – not implemented
in llv8 (though v8 has the info and LLVM provides the
mechanism), FTL does this

• Do more investigation: asm.js code, SMI checks,
accessing objects, …

SunSpider Results

Test Speedup (Original # of iter) x10 iter x100 iter

•  Compatibility: currently supported 10 of 26 SunSpider tests, 10 of 14 Kraken tests; most
of the functions in arewefastyet.com asm.js apps;

•  Performance: 8% speedup (geomean) on SunSpider tests (for
those 10 currently supported out of 26). With increased number of iterations (LongSpider)
the speedup is 16%. For certain tests the speedup is up to 3x (e.g. bitops-bits-in-byte,
depending on the number of iterations).

Current Status

• Compatibility
•  Approx. 80 of 120 Hydrogen nodes lowering implemented
•  Supported benchmarks:

•  10 of 26 SunSpider tests
•  10 of 14 Kraken tests
•  Most of the functions in arewefastyet.com asm.js apps

• Compile time: slow
•  Can be 40 times slower for moderate asm.js programs
•  Currently, we use –O3, but have to retain only essential

optimizations

• Performance
•  Up to x3.5 speedup for certain LongSpider tests
•  8% speedup geomean on SunSpider
•  16% speedup geomean for LongSpider
•  For asm.js, the code performance is pretty close to

CrankShaft’s (not counting the compilation time)

Future Work

o  Implement lowering for the rest of Hydrogen nodes
o  Performance tuning:

o  LLVM passes (do better than –O3)
o  Hack LLVM optimizations so they can better optimize

bitcode generated from JS
o  Fix lowering to LLVM IR so it can be better optimized
o  Asm.js specific optimizations

o  Estimated speedup: when the work is completed, we
anticipate the speedup to be similar to that of FTL JIT in
JavaScriptCore (~14% for v8-v6 benchmark)

o  Fix current known issues listed at github (stack checks,
parallel compilation, crashes)

Conclusions

•  LLV8	goals:	peak	performance	for	hot	funcPons	by	
applying	heavy	compiler	opPmizaPons	found	in	
LLVM	

•  Major	V8	features	implemented:	lowering	for	most	
popular	Hydrogen	nodes,	support	for	OSR	entry/
deopPmizaPons,	GC,	inlining	

•  SubstanPal	performance	improvement	shown	for	a	
few	SunSpider	and	synthePc	tests	

•  Work-in-progress,	many	issues	yet	to	be	solved	
•  Available	as	open	source:		

•  github.com/ispras/llv8		
•  Help	needed	–	we	encourage	everyone	to	join	

the	development!	

Thank you!

