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Abstract (https://llvm.org/devmtg/2018-10/talk-abstracts.html#talk15)

Swift for Tensorflow (https://github.com/tensorflow/swift) is an Open Source project 
that provides a new way to develop machine learning models. It combines the 
usability/debuggability of imperative “define by run” programming models (like 
TensorFlow Eager and PyTorch) with the performance of TensorFlow session/XLA 
(graph compilation).

In this talk, we describe the design and implementation of deabstraction, Graph 
Program Extraction (GPE) and device partitioning used by Swift for TensorFlow. 
These algorithms rely on aggressive mid-level transformations that incorporate 
techniques including inlining, program slicing, interpretation, and advanced control 
flow analysis. While the initial application of these algorithms is to TensorFlow and 
machine learning, these algorithms may be applied to any domain that would benefit 
from an imperative definition of a computation graph, e.g. for high performance 
accelerators in other domains.

https://llvm.org/devmtg/2018-10/talk-abstracts.html#talk15
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Core Question:
How do we extract work for the accelerator?

What are Machine Learning frameworks?

Through one reasonable lens, TensorFlow is a compiler.  It processes machine 
learning models of various kinds, and supports targeting multiple kinds of high 
performance accelerators.

One major design question is how to represent the computation in the model, and 
how to extract it and execute it on an accelerator.

For the purposes of this talk, we’ll explain things in terms of programming a single 
GPU, but our techniques generalize much more than that.



Approach #1: Eager Execution

x = ...

while tf.reduce_sum(x) < 100:

  a = tf.random_uniform(shape=[2, 2], maxval=100, dtype=tf.int32)

  b = tf.constant([[1, 2], [3, 4]], dtype=tf.int32)

  x = tf.nn.relu(x + a + b)

Usability: 👍
- Simple, easy, natural, flexible
- Error messages with sensible stack traces

Performance: 👎
- Cross-op optimization (fusion, tiling, etc)
- Scalability to large accelerators

Eager execution is the simplest model, each call to a function kicks off a CUDA kernel 
that runs an accelerator as soon as each tensor method is executed.  Python 
orchestrates those kernel launches, but the accelerator does the number crunching.

This is an obvious model that is easy for programmers to work with, but it turns out 
that you can get a lot of benefit from loop fusion and other standard compiler 
optimizations, and a simple eager execution mode makes this hard or impossible.  
This becomes a problem with very large accelerators, where you end up leaving them 
idle a lot.



Approach #2: Graph Building

Performance: 👍
- Graph level optimizations, scalability to large accelerators

Usability: 👎
- Awkward to stage control flow and side effects
- Dynamic models cannot be staged into a graph
- Error message quality (QoI)
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APIs that build an explicit graph and execute it are another popular model.  This has 
the benefit of supporting graph level optimizations (e.g. operation fusion), and can 
scale to support high performance accelerators.  OTOH, these APIs are a lot more 
awkward to use (it is like using IRBuilder in your ML model) and can’t represent 
general computation, and there is a trendline towards generality in the field.



Many other approaches
● Lightweight Modular Staging
● Tracing JITs
● Parse subsets of Python
● Hybrid approaches
● ...

How do we combine the usability of 
Eager mode with the performance 

and deployability of graphs?

The question though is how do we get the usability of eager with the performance of 
graphs?  There are a bunch of other approaches people have been trying with lots of 
different tradeoffs, but they each provide different tradeoffs.



Swift for TensorFlow

http://github.com/tensorflow/swift

This is where Swift for TensorFlow comes in.  



import TensorFlow

var x = Tensor<Float>([[1]])

for i in 1...5 {

    x += x • x

}

print(x)

First-class language for machine learning
Designed for usability:

● Eager-style programming model

● Detect many errors without running code

Graph-based execution:

● Scalability and performance
● Deployment to mobile and servers

http://github.com/tensorflow/swift

Swift for TensorFlow is a first-class language for machine learning.  The entire idea of 
the project is to optimize for usability, even if it means making enhancements to the 
compiler and language.  There are many aspects of this, but for this talk, we focus on 
this basic programming model.  S4TF provides the usability of eager mode, combined 
with the performance of graphs.



How does this work?
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“Swift's High-Level IR”, LLVM Developer Meeting, Oct 2015

How does it work?  This is a diagram of the Swift compiler, which includes a parser, 
typechecker and an optimizer for a high level IR called SIL.  If you’d like to learn more 
about SIL, there was a talk a few years ago at the developer meeting.

One nice thing about this is that when you run code at -O0 mode, the ops are run one 
by one in tensorflow just like normal eager mode.

When the optimizer is turned on though, a technique called Graph Program Extraction 
extracts the tensor operations from the program and builds a tensorflow graph, fully 
automatically.  Instead of hand waving about this, I’d like to invite my colleague 
Mingsheng up to talk about it now.



Graph Program Extraction

The exposition and examples are based on the GPE whitepaper 
https://github.com/tensorflow/swift/blob/master/docs/GraphProgramExtraction.md.

The technique has been implemented in the context of Swift as the host language, 
and tensorflow as the accelerator, but as you will see, the underlying design can be 
applied to other languages and accelerators as well.

https://github.com/tensorflow/swift/blob/master/docs/GraphProgramExtraction.md


An example program, and eager execution

func foo() -> Tensor<Float> {

  var w = #tfop("RandomInitOp")  // invokes a TensorFlow operator

  
if (...) { print("running") }  // arbitrary host computation

  for i in 0 ... 1000 {

    let x = #tfop("SomeOp", w)

    w = #tfop("AnotherOp", x)

  }

  return w

}

(hand-off from Chris)
Thank you Chris. To show you how Graph Program Exaction works, let’s take a look 
at this example program.
In this function, user first writes some tensor computation. Here we designate the 
magic tfop syntax to represent any operator that runs in TensorFlow.
User can write host logic, like printing some messages.
Control flows can also be used on tensor computation.

How do we run this program? One option is eager execution, as Chris introduced 
earlier. In that mode, we dispatch each tfop to tensorflow. When needed, we get the 
tensor results back to the host.



TensorFlow graph-based computation

func foo() -> Tensor<Float> {

  var w = #tfop("RandomInitOp")

  if (...) { print("running") }

  for i in 0 ... 1000 {

    let x = #tfop("SomeOp", w)

    w = #tfop("AnotherOp", x)

  }

  

  return w

}

<tensor computation in a graph>

Eager execution is simple and easy to work with. But for higher performance, we want 
to dispatch a larger chunk of tensor computation at once.

To do this, we need to extract a computational graph involving tensors, and dispatch 
the graph to tensorflow just like launching a GPU kernel. TensorFlow supports 
different device types. But for now, you can think of it as a GPU accelerator.



func foo_Graph() -> Tensor<Float> {

  var w = #tfop("RandomInitOp")

  for i in 0 ... 1000 {

    let x = #tfop("SomeOp", w)

    w = #tfop("AnotherOp", x)

  }

  return w

}

GPE: Clone Tensor ops into Graph Function

func foo() -> Tensor<Float> {

  var w = #tfop("RandomInitOp")

  if (...) { print("running") }

  for i in 0 ... 1000 {

    let x = #tfop("SomeOp", w)

    w = #tfop("AnotherOp", x)

  }

  

  return w

}

So let’s look at what we’ll get out of the graph program extraction.
We find those statements and control flows that can run in the graph, and move them 
over to the graph function we create. For high performance, we want to put control 
flow into the graph when possible.



func foo_Graph() -> Tensor<Float> {

  var w = #tfop("RandomInitOp")

  for i in 0 ... 1000 {

    let x = #tfop("SomeOp", w)

    w = #tfop("AnotherOp", x)

  }

  return w

}

GPE: Rewrite Host Function

func foo_Host() -> Tensor<Float> {

  var w = #tfop("RandomInitOp")

  if (...) { print("running") }

  for i in 0 ... 1000 {

    let x = #tfop("SomeOp", w)

    w = #tfop("AnotherOp", x)

  }

  

  return w

}

We then clean up the host code.



func foo_Graph() -> Tensor<Float> {

  var w = #tfop("RandomInitOp")

  for i in 0 ... 1000 {

    let x = #tfop("SomeOp", w)

    w = #tfop("AnotherOp", x)

  }

  return w

}

GPE: Launch and Rendezvous with Graph Function

func foo_Host() -> Tensor<Float> {

  let g = start_graph("foo_Graph")

  if (...) { print("running") }

  let w = wait_on_graph(g)

  return w

}

And we rewrite host code to asynchronously call into the graph function, as if we are 
launching a GPU kernel. The graph runs in TensorFlow, and that’s how we accelerate 
tensor computation.



Algorithm Overview
● Marking tensor ops for graph execution

● Partition the host function into a pair of <host, graph> functions

● Lower the graph function to a TensorFlow graph, and rewrite host function to 
call into TensorFlow graph

We just described what graph program extraction can do to accelerate tensor 
computation. Now let’s look at how it works. The workflow has 3 major steps.
First, we mark all tensor ops that we can later move to the graph. 
Second, we partition the host function, to create a graph function. That’s where the 
marked instructions go.
Last, we prepare the graph function for TensorFlow execution, and rewrite host code 
to call into the graph.



The SIL representation for the original code

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

print …
br ...

%w0 = #tfop("RandomInitOp")
...
cond_br ...

return %w2

Our compiler analysis and transformation is done in the intermediate representation of 
Swift, called SIL. It’s an SSA based IR.

Now I’ll using the same example to walk you through the algorithms on the CFG 
representation.

Here we listed the SIL code (with some simplifications) for the running example. It 
starts with some tensor code followed by an if condition to print message on the host. 
It then runs a loop, and returns the possibly updated tensor w.

(Note: for simplicity, we reuse #tfop to represent tensor ops, even though the correct 
SIL code would be graph_op. We want to avoid introducing that extra concept / 
complexity in this talk.)



Identify tensor ops

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

print …
br ...

%w0 = #tfop("RandomInitOp")
...
cond_br ...

return %w2

In order to extract a graph of tensor computation, we first identify tensor ops. These 
ops must run on tensorflow. You can think of them as anchors in the graph function 
we are about to build.



Compute Tensor Start Point (TSP) and Tensor End Point 
(TEP)

TSP

TEP

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

print …
br ...

%w0 = #tfop("RandomInitOp")
...
cond_br ...

return %w2

Next, we define TSP to be the first tfop instruction. We also define TEP. It’s usually 
the last tfop instruction, but we also require that it post-dominate TSP. In this 
example, TEP is set to the first instruction in the return block.

TSP and TEP together set the boundaries of the tensor program region. From that 
region, we will extract the graph function.



Mark tensor op operands -- process %w0 and %x

TSP

TEP

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

print …
br ...

%w0 = #tfop("RandomInitOp")
...
cond_br ...

return %w2

Now we start processing these tf ops. The goal is to mark them and their relevant 
operands in a transitive way, for them to run in the graph.

When we mark an instruction, we also marked its parent basic block. This way we can 
establish the CFG structure of the graph function.

Here we first mark the tfop w0 and x, along with their associated blocks. 



Mark tensor op operands -- process cond_br %b ...

Scalar 
promotion

TSP

TEP

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

print …
br ...

%w0 = #tfop("RandomInitOp")
...
cond_br ...

return %w2

When a block is marked, we process all its predecessors transitively, and assess 
what other blocks we want to mark for the graph function.

Here we first look at the loop header block, as a predecessor of the loop body. Since 
loop body is control dependent on the header,  in order to run the loop body in the 
graph, we have two options in terms of how to handle conditional branch of the 
header block.

One option is to run it on the host, and send the output to the graph. To minimize 
communication between host and graph, we go with another option, where we run the 
conditional branch itself in the graph. Since the graph only runs tensor computation, 
this option involves promoting the scalar value b into a tensor. We call this scalar 
promotion.



Mark tensor op operands -- process loop preheader

Don’t mark

TSP

TEP

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

print …
br ...

%w0 = #tfop("RandomInitOp")
...
cond_br ...

return %w2

We then recursively process the predecessor of the loop header block, also known as 
the preheader. In this case, loop header post dominates the preheader, so it is not 
control dependent on preheader. As such, we don’t mark the preheader for graph 
execution. 
But we need to recursively process the predecessors of preheader, in case the 
preheader is itself control dependent on some other block.



Mark tensor op operands -- process the print block

Don’t mark

TSP

TEP

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

print …
br ...

%w0 = #tfop("RandomInitOp")
...
cond_br ...

return %w2

This leads us to the print block that only runs host code. We find the loop preheader is 
not control dependent on that print block, so we don’t need to mark the print block. 



Mark tensor op operands -- mark the remaining instructions

TSP

TEP

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

print …
br ...

%w0 = #tfop("RandomInitOp")
...
cond_br ...

return %w2

We continue to process the tf ops and their operands recursively.
We find that the instruction producing b can be marked to run the graph. Recursively, 
we can mark i2, i0 and i1. 



Mark tensor op operands -- mark the remaining instructions

TSP

TEP

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

print …
br ...

%w0 = #tfop("RandomInitOp")
...
cond_br ...

return %w2

When processing the tfop x, we can recursively mark w2 and w1 in the graph as well.

By now, we have completed the marking of instructions that we want to run in the 
graph.

We note a few things:
- First, the cond_br in the entry block is not marked. This is because we did not 

mark the print block that only runs on host. 
- Second, the entire loop control flow has been marked for graph execution.



The partitioning pass: Create graph function by cloning blocks

TSP

TEP

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

print …
br ...

%w0 = #tfop("RandomInitOp")
...
cond_br ...

return %w2

Now that we are done with marking, the partitioning is relatively straightforward. First, 
we create the CFG structure of the graph function, by cloning those marked blocks in 
the host function.



Clone instructions and map values -- entry block

%w0 = …
br ...

No 
conditional 
branch

Print block is excluded 
from the graph function

TSP

TEP

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

print …
br ...

%w0 = #tfop("RandomInitOp")
...
cond_br ...

return %w2

We then clone those marked instructions over. For the entry block, since the 
conditional branch is NOT marked, we synthesize an unconditional branch, going to 
the node that’s the immediate postdominator of the entry block. It’s the loop 
preheader block in this case.
This achieves the goal of excluding the print block from the graph function. This is the 
payoff of the earlier control dependence analysis when we mark the instructions, and 
it showcases the program slicing technique in our design, where the print block is 
sliced out of the graph computation.



Clone instructions and map values -- subsequent blocks

%w0 = …
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

return %w2

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

TSP

TEP

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

print …
br ...

%w0 = #tfop("RandomInitOp")
...
cond_br ...

return %w2

We clone over the other marked instructions. Nothing surprising.



Rewrite host code and call into graph

%w0 = …
br ...

%i0 = 0
br ...

return %w2

TSP

TEP

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%i0 = 0
br ...

print …
br ...

start_graph(...)
%w0 = #tfop("RandomInitOp")
...
cond_br ...

%w2 = wait_on_graph()
return %w2

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

 

The final step of the partitioning is to rewrite the host code. At TSP, we insert a 
runtime call to start the graph computation asynchronously. At TEP, we insert a call to 
wait for the graph computation. 
We also delete those marked tensor instructions from the host. The deletion of the 
loop related basic blocks causes us to rewire the loop preheader to go directly to the 
return block. Again, this is another way of saying we have moved the loop to the 
graph function.



The graph lowering pass
%w0 = …
br ...

%i0 = 0
br ...

return %w2

%i2 = phi %i0, %i1
%w2 = phi %w0, %w1
%b = %i2 < 1000
cond_br %b ...

%x = #tfop("SomeOp", %w2)
%w1 = #tfop("AnotherOp", %x)
%i1 = %i2 + 1
br ...

Now that we have a SIL representation of the graph function, we lower it to a graph 
representation supported by TensorFlow. The lowering is mostly mechanical.

The lowered graph is then stored as a serialized string in the generated binary. When 
we start the graph computation at runtime, the string gets deserialized into a TF 
graph.



Flexible host / graph communication

 let x = #tfop("RandomInitOp")

 let y = #tfop("SomeOtherOp")

 #tfop("SendToHost", x)
 #tfop("SendToHost", y)
 let z = #tfop("RecvFromHost")

 let u = #tfop("Add", z, ...)

let x = RecvFromTF()

let y = RecvFromTF()

let z = atariSimulator(x, y)

SendToTF(z)

let x = #tfop("RandomInitOp")

let y = #tfop("SomeOtherOp")

let z = atariSimulator(x, y)  // runs on the host

let u = #tfop("Add", z, ...)

One of the nice things about this is that we can support flexible communication 
between host and graph functions.
In addition to being able to synchronize at the end of the graph function execution, the 
host and graph functions can also communicate through sending and receiving 
tensors in the middle of their execution. 
In this example, user feeds tensors x and y produced by the graph into a host function 
that runs the atari game simulator.

When we generate the graph function, we insert a send op to send a tensor like x to 
the host. We also add a recv function call in the host to receive that tensor. Similarly, 
we reverse the direction of sends/recvs when we want to feed a tensor produced on 
the host into the graph function, like tensor z here.



Device partitioning support

CPU Cluster Accelerators

So far we’ve been assuming that the TensorFlow execution of the graph is on a single 
device, like GPU. In practice, TensorFlow itself is a distributed system, supporting 
different types of devices such as CPU, GPU and TPU. We are often feeding clusters 
of machines <click> which may each have one or more attached accelerators, and 
the different kinds of accelerators are usually running different programs.  

To do this, our compiler partitions the graph function into a set of per-device graph 
functions, and inserts sends/recvs for cross device communication. The algorithms 
are very similar to the host-graph partitioning that we covered earlier.



Image credit: wikimedia 

Building a Programming Model

Based on the compiler transformations, let’s talk about what programming model we 
can build. 

https://commons.wikimedia.org/wiki/File:Atlas_trophy_bronze.png


We want high level APIs, not tensor assembly!

let result: Tensor<Float> = images • weights

let result: Builtin = #tfop("MatMul", images, weights)

We want to build a programming model with nice abstractions but without runtime 
overhead. This way, users need not limit themselves to the lower level constructs 
based on the tfop magic.



Introduce Tensor struct

struct Tensor<T> {
  var value: Builtin  // the underlying, untyped tensor value
  init(value: Builtin) { self.value = value }

  static func +(_ a: Tensor<T>, _ b: Tensor<T>) -> Tensor<T> {
    return Tensor<T>(#tfop("Add", a.value, b.value))
  }
  func matmul(_ b: Tensor<T>) -> Tensor<T> {
    return Tensor<T>(#tfop("MatMul", self.value, b.value))
  }
}

We first introduce a Tensor struct to wrap tensor values produced by tfops.

--
(Note: for simplicity, we glossed over Tensor vs TensorHandle in this talk.)



Introduce Tensor struct

struct Tensor<T> {
  var value: Builtin  // the underlying, untyped tensor value
  init(value: Builtin) { self.value = value }

  static func +(_ a: Tensor<T>, _ b: Tensor<T>) -> Tensor<T> {
    return Tensor<T>(#tfop("Add", a.value, b.value))
  }

  func matmul(_ b: Tensor<T>) -> Tensor<T> {
    return Tensor<T>(#tfop("MatMul", self.value, b.value))
  }
}

We can then define static and member methods on this struct. Here are some 
examples.



Add structs, tuples and functions

// After inlining the calls
let tmp = Tensor(#tfop("MatMul", x.value, a.value))
let result = Tensor(#tfop("Add", tmp.value, b.value))

// After decomposing structs (same for tuples)
let tmp = #tfop("MatMul", x_value, a_valueb)
let result = #tfop("Add", tmp_value, b_value)

// x, a, b have type Tensor<Float>
let result = x.matmul(a) + b

User can write nice code like this, and functions and structs can get inlined and 
scalarized away by the compiler.

We can also inline higher order functions, as long as the closures do not escape.



Add generics, using specialization
struct DenseLayer<T : Numeric> {
  var weights: Tensor<T>
  var bias: Tensor<T>
  init(inputSize: Int, outputSize: Int) {
...
}
fcl = DenseLayer<Float>(inputSize: 28 * 28, outputSize: 10)

struct DenseLayer_Float {
  var weights: Tensor_Float
  var bias: Tensor_Float
  init(inputSize: Int, outputSize: Int) {
...
}
fcl = DenseLayer_Float(inputSize: 28 * 28, outputSize: 10)

 after specializing

We can support generics as well, and we specialize them when we do graph 
extraction.



Swifty API for ML

let imageBatch = Dataset(elements: images)

let labelBatch = Dataset(elements: labels)

for (image, label) in zip(imageBatch, labelBatch) {

  let y = image • w + b

  let loss = (y - label).squared().mean()

  print(loss)

}

The end result of supporting all these abstractions is that we can provide beautiful 
APIs for end users. In this example, the data sets are used to read and feed training 
data into the ML model running in the loop, on a per-batch basis.



Summary of Graph Program Extraction
GPE can be applied to:

● Other programming languages
● New (non-ML) domains and their accelerators

So this concludes our deep dive into graph program extraction and the associated 
programming model. GPE is a set of algorithms that can be implemented on other 
SSA-based IRs. 
The types of computational graphs that we extract also need not be limited to 
TensorFlow or machine learning. The techniques we presented should be generally 
applicable to domains where you want to slice out specific types of computation in the 
forms of dataflow graphs, and run them onto accelerator devices.

Now, back to Chris.



Swift for TensorFlow

This talk has been about one of the major components of the Swift for TensorFlow 
project.  It also includes work to integrate TensorFlow itself and build APIs for it, 
support for directly integrating Python and using Python APIs in Swift code, and 
perhaps most interesting for compiler folk: first class support for automatic 
differentiation.



func f(x: Tensor<Float>) -> Tensor<Float> {

   return tanh(x • x)

}

let ∇f = #gradient(f)

∇f(y)

Swift First-Class Automatic Differentiation Manifesto

Automatic differentiation allows computing gradients and derivatives of functions in 
vector-space, and an example of the power you get with language integration.  If 
you’re interested, search for the Swift automatic differentiation manifesto.



Get involved!

http://github.com/tensorflow/swift

Swift for TensorFlow is all open source, available now on Github.  If you’re interested 
in finding out more, we have a bunch of technical whitepapers available and a public 
mailing list.  

Thank you


