
Evgeniy Tyurin

evgeniy.tyurin@intel.com

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

2

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of
Intel Corporation or its subsidiaries in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

In 20 minutes

discover collab opportunities
within OpenCL part of LLVM community

Objective

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Mapping to cpu

4

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

OpenCL kernel

Focus on data parallelism!

• Developer writes kernel processing a
single work item within problem space

__kernel void

cl_add(__global float *a,

__global float *b,

__global float *res) {

size_t gid = get_global_id(0);

res[gid] = a[gid] + b[gid];

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

OpenCL kernel

Focus on data parallelism!

• Developer writes kernel processing a
single work item within problem space

• Work-items are organized into work-
groups

• Work-groups comprise the whole
NDRange – problem space

OpenCL 1.2 specification, fig. 3.2

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Work items in a work group are executed
in an implicit loop.

• Work item batch ⇒ SIMD lane

• Work group ⇒ CPU thread

• NDRange ⇒ CPUs

Execution of work groups is parallelized
for CPU units.

OpenCL execution on CPU

__kernel void

cl_mul(__global float *a,

__global float *b,

__global float *res) {

size_t gid = get_global_id(0);

res[gid] = a[gid] + b[gid];

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiler Stack

8

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

CPU Compiler components

Middle/Back-endFront-end

LLVM Scalar &
Vector opts

LLVM IR x86

CodeGen

libclang

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

CPU Compiler components

Middle/Back-endFront-end

LLVM Scalar &
Vector opts

LLVM IR x86

CodeGen

libopencl_clang

libclang

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

CPU Compiler components

Middle/Back-endFront-end

LLVM Scalar &
Vector opts

LLVM IR x86

CodeGen

Khronos SPIR-V/LLVM
bi-way translator

libopencl_clang

libclang

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

CPU Compiler components

Middle/Back-endFront-end

OpenCL
passes

LLVM Scalar &
Vector opts

LLVM IR x86

CodeGen

Khronos SPIR-V/LLVM
bi-way translator

libopencl_clang

libclang

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

CPU Compiler components

Middle/Back-endFront-end

OpenCL
passes

LLVM Scalar &
Vector opts

LLVM IR x86

CodeGen

OpenCL built-in functions lib

Khronos SPIR-V/LLVM
bi-way translator

libopencl_clang

libclang

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

CPU Compiler components

Middle/Back-endFront-end

libopencl_clang

Khronos SPIR-V/LLVM
bi-way translator

OpenCL built-in functions lib

OpenCL
passes

LLVM Scalar &
Vector opts

LLVM IR x86

CG: MCJIT

libclang

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Frontend

15

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Frontend challenges

OpenCL C 1.2/2.0

SPIR-V

SPIR 1.2

x86

Graphics ME/BE

FPGA ME/BE

DSP ME/BE

x86 precompiled binary
CPU ME/ BE

• multiple inputs

• multiple targets

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Frontend challenges

OpenCL C 1.2/2.0

SPIR-V

SPIR 1.2

x86

Graphics ME/BE

FPGA ME/BE

DSP ME/BE

x86 precompiled binary
CPU ME/ BE

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Frontend challenges

OpenCL C 1.2/2.0

SPIR-V

SPIR 1.2

x86

LLVM IR
“Equalizer”

LLVM IR 3.2

Graphics ME/BE

FPGA ME/BE

DSP ME/BE• mangling
• pipe / enqueue

differences

x86 precompiled binary
CPU ME/ BE

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Frontend challenges

Khronos SPIR-V/LLVM
bi-way translator

OpenCL C 1.2/2.0

SPIR-V

SPIR 1.2

x86

LLVM IR
“Equalizer”~trunk LLVM IR

Graphics ME/BE

FPGA ME/BE

DSP ME/BE

x86 precompiled binary
CPU ME/ BE

LLVM IR 3.2

• mangling
• pipe / enqueue

differences

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Frontend challenges

libopencl_clang

libclang

OpenCL C 1.2/2.0

SPIR-V

SPIR 1.2

trunk LLVM IR
“spir” triple

x86

LLVM IR
“Equalizer”~trunk LLVM IR

Graphics ME/BE

FPGA ME/BE

DSP ME/BE

x86 precompiled binary
CPU ME/ BE

Khronos SPIR-V/LLVM
bi-way translator

LLVM IR 3.2

• mangling
• pipe / enqueue

differences

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

libopencl_clang

OpenCL-oriented libclang extension/wrapper

 In-memory from-source compilation

 Precompiled headers for OpenCL built-ins

 C-style APIs for actions like Compile/Link/GetKernelArgInfo

 Stable API for different device backends

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

libopencl_clang – example #1
extern "C" CC_DLL_EXPORT int Compile(
// A pointer to main program's source (null terminated string)
const char *pszProgramSource,
// array of additional input headers to be passed in memory (each null
// terminated)
const char **pInputHeaders,
// the number of input headers in pInputHeaders
unsigned int uiNumInputHeaders,
// array of input headers names corresponding to pInputHeaders
const char **pInputHeadersNames,
// optional pointer to the pch buffer
const char *pPCHBuffer,
// size of the pch buffer
size_t uiPCHBufferSize,
// OpenCL application supplied options
const char *pszOptions,
// optional extra options string usually supplied by runtime
const char *pszOptionsEx,
// OpenCL version string - "120" for OpenCL 1.2, "200" for OpenCL 2.0, ...
const char *pszOpenCLVer,
// optional outbound pointer to the compilation results
Intel::OpenCL::ClangFE::IOCLFEBinaryResult **pBinaryResult

);

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

libopencl_clang – example #2
extern "C" CC_DLL_EXPORT int Link(
// array of additional input headers to be passed in memory
const void **pInputBinaries,
// the number of input binaries
unsigned int uiNumBinaries,
// the size in bytes of each binary
const size_t *puiBinariesSizes,
// OpenCL application supplied options
const char *pszOptions,
// optional outbound pointer to the compilation results
Intel::OpenCL::ClangFE::IOCLFEBinaryResult **pBinaryResult
);

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

libopencl_clang

Source is available @ https://github.com/intel/opencl-clang

https://github.com/intel/opencl-clang

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Middle end

25

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

CPU middle end challenges
Scalar opts

LLVM IR

Vector opts

Loop creator

Barrier resolution

Address space resolving

Optimize a hetero language!

CPU-unfriendly OpenCL features:

 barrier

 address spaces

 images

 pipes Loop opts

Built-in import

LLVM MCJIT

x86 MC

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

OpenCL barrier
Scalar opts

LLVM IR

Vector opts

Loop creator

barrier resolution

Address space resolving

Loop opts

Built-in import

LLVM MCJIT

x86 MC

Handles barrier() built-in function

 All work-items in work-group must
hit the barrier before any of them
can continue execution

 Pass splits the CFG along barrier
calls and creates ‘switch’-driven
work-group loops to enforce the
barrier

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Barrier resolution

Conceptual pseudo code

kernel void test(...)
{
...code1
barrier();
...code2

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Barrier resolution

Conceptual pseudo code

kernel void test(...)
{

int currWI = 0;
int currBarrier = 0;

label_0:
...code1
goto label_barrier_1;

label_barrier_1:
if (currWI < groupSize) {
currWI++;
switch (currBarrier) {
case 0: goto label_0;
case 1: goto label_1;
}

}
else {
currWI = 0;
currBarrier = 1; //check and exit if finised

}
label_1:

...code2
goto label_barrier_1;

}

kernel void test(...)
{
...code1
barrier();
...code2

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

Barrier resolution

Let’s consider this:

kernel void test(...)
{
int x = b * A[wi_id];
barrier();
C[wi_id] = x;

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Barrier resolution

Let’s consider this:

kernel void test(...)
{
int x = b * A[wi_id];
barrier();
C[wi_id] = x;

}

kernel void test(...)
{

int currWI = 0;
int currBarrier = 0;

label_0:
int x = b * A[wi_id];
goto label_barrier_1;

label_barrier_1:
if (currWI < groupSize) {
currWI++;
switch (currBarrier) {
case 0: goto label_0;
case 1: goto label_1;
}

}
else {
currWI = 0;
currBarrier = 1; //check and exit if finised

}
label_1:

C[wi_id] = x;
goto label_barrier_1;

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

Barrier resolution

Let’s consider this:

• values x is different for every work
item;

kernel void test(...)
{

int currWI = 0;
int currBarrier = 0;

label_0:
int x = b * A[wi_id];
goto label_barrier_1;

label_barrier_1:
if (currWI < groupSize) {
currWI++;
switch (currBarrier) {
case 0: goto label_0;
case 1: goto label_1;
}

}
else {
currWI = 0;
currBarrier = 1; //check and exit if finised

}
label_1:

C[wi_id] = x;
goto label_barrier_1;

}

kernel void test(...)
{
int x = b * A[wi_id];
barrier();
C[wi_id] = x;

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
33

Barrier resolution

Let’s consider this:

• values x is different for every work
item;

• after barrier all work-items will use
same value for x!

kernel void test(...)
{
int x = b * A[wi_id];
barrier();
C[wi_id] = x;

}

kernel void test(...)
{

int currWI = 0;
int currBarrier = 0;

label_0:
int x = b * A[wi_id];
goto label_barrier_1;

label_barrier_1:
if (currWI < groupSize) {
currWI++;
switch (currBarrier) {
case 0: goto label_0;
case 1: goto label_1;
}

}
else {
currWI = 0;
currBarrier = 1; //check and exit if finised

}
label_1:

C[wi_id] = x;
goto label_barrier_1;

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
34

Barrier resolution

Pseudo code:

• values crossing the a barrier must
be preserved for each work-item;

kernel void test(...)
{
int x = b * A[wi_id];
barrier();
C[wi_id] = x;

}

kernel void test(...)
{

int currWI = 0;
int currBarrier = 0;

label_0:
store x into buffer[offset];
goto label_barrier_1;

label_barrier_1:
if (currWI < groupSize) {
currWI++;
switch (currBarrier) {
case 0: goto label_0;
case 1: goto label_1;
}

}
else {
currWI = 0;
currBarrier = 1; //check and exit if finised

}
label_1:

load x_1 from buffer[offset];
goto label_barrier_1;

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
35

Barrier: Analysis phase

• both x and y depend on work-item ID.

• scope analysis:

• x crosses barrier

• y does not cross

• only x is marked and it’s size 32

• x offset will be 0

• next value’s offset will be 4

kernel void test(...)
{
int x = b * A[wi_id];
int y = B[wi_id];
barrier();
C[wi_id] = x;

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

Barrier: Analysis phase - Contd
barrier():

 Give barrier instruction a unique number [1,…,#bariers]

 Find the predecessor barriers for each barrier instruction

IR values:

 We are interested only in values that depend on work-item ID

 Find aliveness scope of such values and mark if they cross the barrier

 Find the total size in bytes of marked LLVM IR values

 Calculate the offset of each marked value with respect to the total size and with
alignment consideration

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
37

Barrier: Transformation phase
• Add two new alloca variables to the beginning of the kernel

• “currWI” initialized to 0

• “currBarrier” initialized to 0

• for every marked LLVM value

• Store this value to special buffer at offset given by the Analysis pass

• For each barrier that exists in the scope of the value add a load
instruction from the special buffer at same offset

• Replace all usage of this value to use the new loaded value

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
38

Barrier: Transformation phase - Contd
• for each Barrier instruction

• Replace it with this code:

if (currWI < groupSize) {
currWI++;
switch (currBarrier) {
case 0: goto label_0;
// case i: goto label_i;
// for all "i" in barrier predecessors

}
}
else {
currWI = 0;
currBarrier = #;

}
label_#: // current barrier number
__mm_mfence();

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
39

Barrier - Contd

• there’s only one barrier

• it’s number is #1

• barrier #0 is always the prologue of the
kernel.

• predecessor of barrier #1 is #0.

kernel void test(...)
{
int x = b * A[wi_id];
int y = B[wi_id];
barrier();
C[wi_id] = x;

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
40

Barrier inside a function

kernel void test(...)
{
...code1
barrier();
...code2
C[wi_id] = foo();

}

int foo()
{
...code3
barrier();
...code4

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
41

Barrier inside a function

jump into the insides of a function required

kernel void test(...)
{
...code1
barrier();
...code2
C[wi_id] = foo();

}

int foo()
{
...code3
barrier();
...code4

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
42

Barrier inside a function - solution

Inline function?

kernel void test(...)
{
...code1
barrier();
...code2
C[wi_id] = foo();

}

int foo()
{
...code3
barrier();
...code4

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
43

Barrier inside a function - solution

Inline function:

• what if we cannot inline?

kernel void test(...)
{
...code1
barrier();
...code2
C[wi_id] = foo();

}

int foo()
{
...code3
barrier();
...code4

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
44

Barrier inside a function - solution

kernel void test(...)
{
...code1
barrier();
...code2
C[local_wi_id] = foo();

}

int foo()
{
...code3
barrier();
...code4

}

kernel void test(...)
{
...code1
barrier();
...code2
barrier(); // extra
C[wi_id] = foo();
dummyBarrier();

}

int foo()
{
dummyBarrier();
...code3
barrier();
...code4
barrier(); // extra

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
45

Barrier inside a function - solution
kernel void test(...)
{
...code1
barrier();
...code2
barrier(); // extra
C[wi_id] = foo();
dummyBarrier();

}

int foo()
{
dummyBarrier();
...code3
barrier();
...code4
barrier(); // extra

}

• For each function with barrier:

• add dummyBarrier() at its begin

• add barrier() at it’s end.

• For each call to a function with barrier:

• add barrier() before the function call

• add dummyBarrier() after the function call

• dummyBarrier()

• only counts towards barrier predecessors

• has no barrier semantics

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
46

Let’s exchange feedback,

ask questions,

and extend collaboration beyond today’s limits

Takeaway

