Targeting a statically compiled program
repository with LLVM

Russell Gallop
April 2019

AOXO

¢p9 Plﬂy5t0t|0n® “ | OQ systems
O v O x ¢

Program Repository

 The Program Repository (or Repo)
IS a research project at SN Systems

* |t aims to dramatically improve build

times for large C++ programs by:
« Avoiding repeated codegen across
compilation units and builds
* Moving link time de-duplication to
compile time

 Stores compiled objects in a
repository instead of object files

Program Repo

AOXO

2L PlayStation.

&n)

systems

History E

« At the 2016 US Dev Meeting talk we demoed “Toy tools” prototype
* https://www.youtube.com/watch?v=-pL94rqyQ6¢c
* This used a toy programming language and YAML object files

 Since then we have implemented this idea for C/C++ and Linux on a fork of LLVM:
* https://github.com/SNSystems/llvm-project-prepo
« Up to date with 8.0 release branch point

< PlayStation. En)systéms

https://www.youtube.com/watch?v=-pL94rqyQ6c
https://github.com/SNSystems/llvm-project-prepo

Implementation

Front-end Middle-end Back-end

» RepoMetadataGeneration * RepoObjectWriter
* RepoPruning

« We implemented this as a couple of optimization passes and a new object type

X

& PlayStation. o o © Er)svstems

g

a) Adding Program Repository metadata

Front-end Middle-end Back-end

» RepoMetadataGeneration * RepoObjectWriter
* RepoPruning

» <Optimisation passes>

* We added a new pass to the start of the optimisation pipeline:
class RepoMetadataGeneration : public ModulePass {...}

* This calculates a digest of each function from the front-end and the pass pipeline
that will be run on it
- Recorded as metadata in the IR

'2 = ITicketNode (name: " Z3foov",
digest: [16 x 18] c"0g4WG\1B&\89\F9\FB\92|\AA\94j\9B",
linkage: external,
pruned: false)

* This digest is used as the key for the compiled object data in the Program Repo

AOXO

A PlayStation. o o systari

b) Pruning

Front-end Middle-end Back-end

» RepoMetadataGeneration * RepoObjectWriter
* RepoPruning

» <Optimisation passes>

 Following this we added another pass
class RepoPruning : public ModulePass {...}

* This checks If compiled objects are already in the Program Repo

* If present then it avoids optimisation by:
 Setting their linkage type
define available externally void @ Z3foov() #0 !repo ticket !2
« Marking that they have been pruned in the Program Repo metadata
'2 = !TicketNode (name: " Z3foov",
digest: [16 x 18] c"0g4WG\1B&\89\FI\FB\92|\AA\94j\9B",
linkage: external,
pruned: true)

L PlayStation. LA 04 E)+ O+4§"2>+A O, @Systé%g

o2 o ©

c) Emitting objects to the repository

Front-end Middle-end

» RepoMetadataGeneration
* RepoPruning
» <Optimisation passes>

Back-end

* RepoObjectWriter

* We have added a new ObjectWriter
* class RepoObjectWriter : public MCObjectWriter

 This writes 2 things to the Program Repo
1. Compiled objects (called Fragments) indexed by the object digest
2. Alist of all compiled objects in a module (a CompilationRecord)

* In place of an object file it writes a small output file (a TicketFile)

« This has a file signature and the index of the module’s CompilationRecord (e.g.)
$ xxd foo.o
00000000: 746b 6354 6f70 6552 15ae 9e73 ff59 92ee tkcTopeR...s.Y..
00000010: 874c 2a27 e9%9ald bf50 LXTLLLP

X

& PlayStation. o o © Er)svstems

g

What about linking? 2

* Program Repo fundamentally breaks the traditional object file format so requires a
different approach to linking

* We have started work on a prototype linker to link programs directly from the
Program Repo

< PlayStation. En)systéms

Testing E

 For testing we have a tool called repo20bj. This:

* Reads a TicketFile
 Finds all the objects that are required for it in the Program Repo
» Creates ELF object files which can be linked with a standard ELF linker

 This is inefficient as it creates all of the duplicates that the repository tries to avoid
but allows us to test the compiler and repository are working correctly

< PlayStation. En)systéms

Results

« We can now build optimized LLVM/Clang with the Program Repo
e ~100 LIT/unit test failures, being investigated

 Limited debug information (line tables)
« Working on performance results

< PlayStation. En)systéms

Summary 2

* Program Repository concept implemented in LLVM for Linux and C/C++
« Added 2 ModulePasses and one ObjectWriter
* We can build and run optimized LLVM/Clang (with repo20b7j)

* Please try it out: https://github.com/SNSystems/llvm-project-prepo

* Thanks to:
- Paul Bowen-Huggett
* Phil Camp
« Maggie Yi
« Carlos Enciso

< PlayStation. En)systéms

https://github.com/SNSystems/llvm-project-prepo

