
Targeting a statically compiled program
repository with LLVM

Russell Gallop

April 2019

• The Program Repository (or Repo)

is a research project at SN Systems

• It aims to dramatically improve build

times for large C++ programs by:
• Avoiding repeated codegen across

compilation units and builds

• Moving link time de-duplication to

compile time

• Stores compiled objects in a

repository instead of object files

Program Repository

CC CC LD

Program Repo

foo1()

foo2()

foo2()

foo3()

foo1()

foo2()

foo3()

History

• At the 2016 US Dev Meeting talk we demoed “Toy tools” prototype
• https://www.youtube.com/watch?v=-pL94rqyQ6c

• This used a toy programming language and YAML object files

• Since then we have implemented this idea for C/C++ and Linux on a fork of LLVM:
• https://github.com/SNSystems/llvm-project-prepo

• Up to date with 8.0 release branch point

https://www.youtube.com/watch?v=-pL94rqyQ6c
https://github.com/SNSystems/llvm-project-prepo

Implementation

• We implemented this as a couple of optimization passes and a new object type

Front-end Middle-end

• RepoMetadataGeneration

• RepoPruning

Back-end

• RepoObjectWriter

a) Adding Program Repository metadata

• We added a new pass to the start of the optimisation pipeline:
class RepoMetadataGeneration : public ModulePass {...}

• This calculates a digest of each function from the front-end and the pass pipeline

that will be run on it

• Recorded as metadata in the IR
!2 = !TicketNode(name: "_Z3foov",

digest: [16 x i8] c"0g4WG\1B&\89\F9\FB\92|\AA\94j\9B",

linkage: external,

pruned: false)

• This digest is used as the key for the compiled object data in the Program Repo

Front-end Middle-end

• RepoMetadataGeneration

• RepoPruning

• <Optimisation passes>

• ...

Back-end

• RepoObjectWriter

b) Pruning

• Following this we added another pass
class RepoPruning : public ModulePass {...}

• This checks if compiled objects are already in the Program Repo

• If present then it avoids optimisation by:
• Setting their linkage type

define available_externally void @_Z3foov() #0 !repo_ticket !2

• Marking that they have been pruned in the Program Repo metadata
!2 = !TicketNode(name: "_Z3foov",

digest: [16 x i8] c"0g4WG\1B&\89\F9\FB\92|\AA\94j\9B",

linkage: external,

pruned: true)

Front-end Middle-end

• RepoMetadataGeneration

• RepoPruning

• <Optimisation passes>

• ...

Back-end

• RepoObjectWriter

c) Emitting objects to the repository

• We have added a new ObjectWriter
• class RepoObjectWriter : public MCObjectWriter {

• This writes 2 things to the Program Repo
1. Compiled objects (called Fragments) indexed by the object digest

2. A list of all compiled objects in a module (a CompilationRecord)

• In place of an object file it writes a small output file (a TicketFile)
• This has a file signature and the index of the module’s CompilationRecord (e.g.)
$ xxd foo.o

00000000: 746b 6354 6f70 6552 15ae 9e73 ff59 92ee tkcTopeR...s.Y..

00000010: 874c 2a27 e9a0 bf50 .L*'...P

Front-end Middle-end

• RepoMetadataGeneration

• RepoPruning

• <Optimisation passes>

• ...

Back-end

• RepoObjectWriter

What about linking?

• Program Repo fundamentally breaks the traditional object file format so requires a

different approach to linking

• We have started work on a prototype linker to link programs directly from the

Program Repo

Testing

• For testing we have a tool called repo2obj. This:
• Reads a TicketFile

• Finds all the objects that are required for it in the Program Repo

• Creates ELF object files which can be linked with a standard ELF linker

• This is inefficient as it creates all of the duplicates that the repository tries to avoid

but allows us to test the compiler and repository are working correctly

Results

• We can now build optimized LLVM/Clang with the Program Repo
• ~100 LIT/unit test failures, being investigated

• Limited debug information (line tables)

• Working on performance results

Summary

• Program Repository concept implemented in LLVM for Linux and C/C++

• Added 2 ModulePasses and one ObjectWriter
• We can build and run optimized LLVM/Clang (with repo2obj)

• Please try it out: https://github.com/SNSystems/llvm-project-prepo

• Thanks to:
• Paul Bowen-Huggett

• Phil Camp

• Maggie Yi

• Carlos Enciso

https://github.com/SNSystems/llvm-project-prepo

