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Simple OLV == Loop Unroll-And-Jam (UnJ) + SLP

▪ OLV can be visualized as [Nuzman & Zaks, PACT 2008]

⁃ Unroll the outer loop by k times

⁃ Jam all the k-inner loop instances of the outer loop

⁃ Vectorize the loops using SLP

▪ Ex:

for ( i = 0; i < N; i+= 4 ) {

accum1 = accum2 = … 0;

for ( j = 0; j < 5; j++) {

accum1 += in[j][i] * filter[j];

accum2 += in[j][i+1] * filter[j];

accum3 += in[j][i+2] * filter[j];

accum4 += in[j][i+3] * filter[j];

}

out[i] = sqrtf(accum1)/particles;

out[i+1] = sqrtf(accum2)/particles;

out[i+2] = sqrtf(accum3)/particles;

out[i+3] = sqrtf(accum4)/particles;

}

<v_particles> = bcast<vparticles>

for ( i = 0; i < N; i+= 4 ) {

<v_accum> = bcast<0,…,0>;

for ( j = 0; j < 5; j++) {

<v_accum> += 

ld <in[j][i],…,in[j][i+3]> * bcast<filter[j]>;

}

st <out[i],…,out[i+3]> =        

vsqrtf(<v_accum>)/<v_particles>;

}

Original After Unroll After UnJ After SLP

Better code generation of inner loop reduction
No gather in the inner loop

for ( i = 0; i < N; i+= 4 ) {
accum1 = accum2 = 

accum3 = accum4 = 0;
for ( j = 0; j < 5; j++)

accum1 += in[j][i] * filter[j];
for ( j = 0; j < 5; j++)

accum2 += in[j][i+1] * filter[j];
for ( j = 0; j < 5; j++)

accum3 += in[j][i+2] * filter[j];
for ( j = 0; j < 5; j++)

accum4 += in[j][i+3] * filter[j];
out[i] = sqrtf(accum1)/particles;
out[i+1] = sqrtf(accum2)/particles;
out[i+2] = sqrtf(accum3)/particles;
out[i+3] = sqrtf(accum4)/particles;

}

for ( i = 0; i < N; i++ ) {

accum = 0;

for ( j = 0; j < 5; j++)

accum += in[j][i] * filter[j];

out[i] = sqrtf(accum)/particles;

}



Loop Unroll-And-Jam

▪New Pass introduced in July 2018
⁃ lib/Transforms/Scalar/LoopUnrollAndJamPass.cpp

▪Two flags –enable-unroll-and-jam and –allow-unroll-and-jam

▪Supports pragma allow_unroll_and_jam(factor)

▪Called ‘after’ SLP in PassManager
⁃ Scheduling UnJ after SLP is late for our purpose



Modifications in IPO/PassManager to support OLV

▪ Schedule UnJ Pass before the LoopVectorizer Pass

▪ Call a bunch of cleanup routines after that

⁃ Looks like we may need to call LSR as a cleanup pretty early (challenging ?)

⁃ LSR needed probably because UnJ implementation is not optimal

▪ …        UnJ cleanup LV        … SLP          …

▪ Need to schedule SLP also before LV ?

⁃ …        UnJ cleanup SLP’          …         LV        … SLP’ …

⁃ Else LV may vectorize the jammed inner loop resulting in code which we don’t 
like ?

⁃ Very likely that due to costing LV will not vectorize the inner loop

⁃ Even if it does, we can modify SLP to SLP’ to vectorize “already-vectorized” 
code



One more example

▪ Reported in llvm-dev in 2017

⁃ Inner loop data dependence

⁃ No outer loop simdization
pragma

⁃ Expects automatic OLV

▪ UnJ+SLP does OLV

⁃ Current llvm stage does some 
OLV but not cleanly

⁃ mul, sub not vectorized

//Courtesy Jyotirmay Bhattacharya - llvm-dev, circa 2017

//C++ code that evaluates a Chebyshev polynomial using Clenshaw's algorithm

void cheby_eval(double * restrict coeffs, int n, double * restrict xs, double * restrict ys, int m)

{

for (int i=0;i<m;i++){

double x = xs[i];

double u0=0,u1=0,u2=0;

for (int k=n;k>=0;k--){

u2 = u1;

u1 = u0;

u0 = 2*x*u1-u2+coeffs[k];

}

ys[i] = 0.5*(coeffs[0]+u0-u2);

}

}

vmovapd %ymm6, %ymm4

vmovapd %ymm5, %ymm6

vmulpd %ymm5, %ymm3, %ymm5

vsubpd %ymm4, %ymm5, %ymm5

vbroadcastsd -16(%rdi,%rbx,8), %ymm7

vaddpd %ymm7, %ymm5, %ymm5 

addq $-1, %rbx

cmpq $1, %rbx

jg .LBB0_17

Data Dependence

UnJ+SLP’d



Open Problems

▪ Costing and Feasibility

⁃ Which loops to UnJ

⁃ Inner loops with reductions

⁃ Inner Loops with accesses strided on the outer loop index

⁃ Inner Loops with low trip count

⁃ Inner loops with data dependence but no dependence on the outer loops

⁃ What is the unroll factor (UF) ?

⁃ Assume SLP will work in which case choose UF such that DataSize * UF = SIMD width
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