An alternative
OpenMP Backend for Polly

Michael Halkenhauser, Lukas Sommer
Embedded Systems and Applications Group (ESA), Technische Universitat Darmstadt, Germany
michael.halkenhaeuser@stud.tu-darmstadt.de, sommer@esa.tu-darmstadt.de

TECHNISCHE
UNIVERSITAT
DARMSTADT

Embedded Systems & Applications

Overview

// "matvect" -- Sequential
// Used as sample input for Polly.
// (Simplified dependencies.)

* Polly supports OpenMP auto-parallelization.

* Single user option: thread count.

Transformations + Dependency Analysis

// "matvect'" -- OpenMP parallelized
// Equivalent to the LLVM-IR
// output of Polly's OpenMP backend.

* Its current backend creates runtime sched- Sequential #pragma omp parallel for [...] \
uled loops only, using an environment var.) scopDetection [popncgra ggjggzneration> —— schedule (dynamic, 1) num_threads(N)
e Mandatory support of GNU’s OpenMP lib. for (1 = 0; 1 <=n; 1++) { Translation | TOPTesea R for (i = 0; i <= n; i++) {
. for (j = 0; j <= n; j++) | ‘l'g for (J = 0; J <= n; j++)
° mport/Export
Hence, We Want to present Our eXteIlSIOIl. S [1] — S [1] + a [1] [J] * X [J] ; External Optimizers / Manual Optimizations S [1] — S [1] + a [1] [J] * X [J] ;
e Extra switches: scheduling & chunk size } }

e Utilizing LIVM’s OpenMP library Figure 1: matvect Kernel

static Scheduling dynamic Scheduling

e Even distribution of work among OpenMP threads. e Work-shares (of chunk size) are assigned dynamically.

* Work-shares are predetermined.

* Minimal organization overhead. request another chunk (if available).

e Well suited for problems, where each iteration takes simi- * Potentially high organization overhead.

lar amounts of time to complete. * Advantageous when load imbalances may occur.

Figure 2: Polly workflow schematic [1].

e After completion of a chunk, the respective worker will

Figure 3: matvect Kernel (OpenMP)

guided Scheduling

e Chunk size starts off large and decreases over time.
* Provided chunk size is actually a minimum chunk size.
e Lower organization overhead (than dynamic).

* Advantageous when load imbalances may occur and dy-
namic work distribution turns out to be an issue.

Experimental results

Chunk size Scheduling type

LLVM OpenMP Chunk Size Comparison
Large dataset - No Vectorization - Dynamic Scheduling - 12 Threads - Baseline: Chunk Size 1

LLVM OpenMP Scheduling Comparison
No Vectorization - 12 Threads - Baseline: Dynamic Scheduling

4.0 mmm Chunksize2 10.0-
[Chunk Size 3
I Chunk Size 4
I Chunk Size 6 8.0
o o
5 5
; F
o 8_ 6.0
wn wn
o 2 0 ... o
g g
Q v 4.0
5 5
< <
0.0° > S+) N S e @ Q N Q = QL I S A & 0.0 +) < N X NS NN
RS N RN S SN 2 O N\ J AL > S RO A 2 MR O\ L J < < &
A O\Q,@ Q>fz}° RS X @(\0 66‘\&09 @@4 0@@ é‘@\ 0@(50 N\ oﬁ@ & s & A N 0\6& 5 o {@Q bé\& 0@@ é& \)&& s S 0&50 N G\é\ (;\@ S &
QO < > (o) 2 9 A\ QO {) o S AN\
& coﬁ 004 & o &S (Jo\\) & Qh

PolyBench-Benchmark PolyBench-Benchmark

Figure 4: Impact of different chunk sizes. Figure 5: Impact of different scheduling types.

e Variation of the chunk size may improve performance.

e But: An optimal value is problem-dependent. speedups.

OpenMP library comparison General comparison

GNU & LLVM Backend Comparison
Large Dataset - No Vectorization - 12 Threads - Baseline: GNU Backend

clang Comparison
Large Dataset - With Vectorization - Baseline: clang-8 -O3

350_ ..

2.0+ I LLVM OpenMP - Best Result I LLVM OpenMP - Best Result - 12 Threads

30.0
%15 .. %250
© ©
3 3
a 220.0
T 1.0 e
3 2150
2 2
e c
(@] (@]
< < 10.0

o
Ul
U1
o

0.0 L%

o
o

R\ < (1,‘{‘ q\& <

PolyBench-Benchmark

PolyBench-Benchmark

Figure 7: Comparison of both OpenMP backends. Figure 8: Clang versus our LLVM OpenMP backend.

e The LIVM OpenMP library achieves comparable results.

* Additionally, there are several cases where our backend
achieves up to 1.6x relative speedup.

* Our alternative backend remains competitive overall.

* Choosing an appropriate scheduling type may yield high

Thread count

LLVM OpenMP Thread Count Comparison
Dynamic Scheduling - No Vectorization - Chunk Size 1 - Baseline: 4 Threads

Il 8 Threads - Large Dataset
[12 Threads - Large Dataset

N
o

Achieved Speedup

R &' \\\’ @Q 4" (Q

NSRS
€ d& (94’0’ &

0.0-

& &

PolyBench-Benchmark

Figure 6: Evaluation of different thread counts.

e Higher thread counts may offer more processing power.

* However, the setup of threads has to be amortized.

Conclusion

* Introduced switches carry no clear drawback:

— Only in three considered cases, the GNU backend is able
to achieve a lead of at least three percent.

* Not every benchmark will be parallelized w.r.t. the mea-
sured section (but the initialization).

e Chunk size offers problem-dependent customization but will
decrease performance in unfavorable settings.

e Scheduling types may also be used to account for pecu-
liarities of a computation and our results emphasize the
advantage of a corresponding switch.

e In seven cases our backend gains significant speedups, when
compared to the existing GNU-based backend.

 Large problem sizes benefit from thread level parallelism.

References

[1] T. Grosser, H. Zheng, R. Aloor, A. Simbiirger, A. Grof3linger, and L.-N. Pouchet, “Polly
- polyhedral optimization in llvm,” in Proceedings of the First International Workshop
on Polyhedral Compilation Techniques (IMPACT), vol. 2011, 2011, p. 1.

Polly — LLVM OpenMP Backend Source

The LIVM OpenMP backend extension was committed to Polly:
https://github.com/l11vm/1lvm-project/commit/89251ed

https://github.com/llvm/llvm-project/commit/89251ed
https://github.com/llvm/llvm-project/commit/89251ed

