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Overview

// "matvect" -- Sequential
// Used as sample input for Polly.
// (Simplified dependencies.)

* Polly supports OpenMP auto-parallelization.

* Single user option: thread count.

Transformations + Dependency Analysis

// "matvect'" -- OpenMP parallelized
// Equivalent to the LLVM-IR
// output of Polly's OpenMP backend.

* Its current backend creates runtime sched- Sequential #pragma omp parallel for [...] \
uled loops only, using an environment var. ) scopDetection [ popncgra ggjggzneration> —— schedule (dynamic, 1) num_threads(N)
e Mandatory support of GNU’s OpenMP lib. for (1 = 0; 1 <=n; 1++) { Translation | TOPTesea R for (i = 0; i <= n; i++) {
. for (j = 0; j <= n; j++) | ‘l'g for (J = 0; J <= n; j++)
° mport/Export
Hence, We Want to present Our eXteIlSIOIl. S [1] — S [1] + a [1] [J] * X [J] ; External Optimizers / Manual Optimizations S [1] — S [1] + a [1] [J] * X [J] ;
e Extra switches: scheduling & chunk size } }

e Utilizing LIVM’s OpenMP library Figure 1: matvect Kernel

static Scheduling dynamic Scheduling

e Even distribution of work among OpenMP threads. e Work-shares (of chunk size) are assigned dynamically.

* Work-shares are predetermined.

* Minimal organization overhead. request another chunk (if available).

e Well suited for problems, where each iteration takes simi- * Potentially high organization overhead.

lar amounts of time to complete. * Advantageous when load imbalances may occur.

Figure 2: Polly workflow schematic [1].

e After completion of a chunk, the respective worker will

Figure 3: matvect Kernel (OpenMP)

guided Scheduling

e Chunk size starts off large and decreases over time.
* Provided chunk size is actually a minimum chunk size.
e Lower organization overhead (than dynamic).

* Advantageous when load imbalances may occur and dy-
namic work distribution turns out to be an issue.

Experimental results
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Figure 4: Impact of different chunk sizes. Figure 5: Impact of different scheduling types.

e Variation of the chunk size may improve performance.

e But: An optimal value is problem-dependent. speedups.

OpenMP library comparison General comparison

GNU & LLVM Backend Comparison
Large Dataset - No Vectorization - 12 Threads - Baseline: GNU Backend

clang Comparison
Large Dataset - With Vectorization - Baseline: clang-8 -O3
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Figure 7: Comparison of both OpenMP backends. Figure 8: Clang versus our LLVM OpenMP backend.

e The LIVM OpenMP library achieves comparable results.

* Additionally, there are several cases where our backend
achieves up to 1.6x relative speedup.

* Our alternative backend remains competitive overall.

* Choosing an appropriate scheduling type may yield high

Thread count
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Figure 6: Evaluation of different thread counts.

e Higher thread counts may offer more processing power.

* However, the setup of threads has to be amortized.

Conclusion

* Introduced switches carry no clear drawback:

— Only in three considered cases, the GNU backend is able
to achieve a lead of at least three percent.

* Not every benchmark will be parallelized w.r.t. the mea-
sured section (but the initialization).

e Chunk size offers problem-dependent customization but will
decrease performance in unfavorable settings.

e Scheduling types may also be used to account for pecu-
liarities of a computation and our results emphasize the
advantage of a corresponding switch.

e In seven cases our backend gains significant speedups, when
compared to the existing GNU-based backend.

 Large problem sizes benefit from thread level parallelism.
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Polly — LLVM OpenMP Backend Source

The LIVM OpenMP backend extension was committed to Polly:
https://github.com/l11vm/1lvm-project/commit/89251ed



https://github.com/llvm/llvm-project/commit/89251ed
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