
Adding support for C++ contracts to Clang
†Javier López-Gómez *J. Daniel García

Computer Science and Engineering Department,Universisty Carlos III of Madrid

C++ contracts (P0542R5 TS)

P0542R5 is a proposal to support contract based

programming in C++ which was recently accepted as

part of the current ISO C++ working draft. It leverages

a slightly modified C++11 attribute syntax to state as-

sertions, preconditions or postconditions.

Assertions. The [[assert: …]] attribute appertain

to a NullStmt. Hence, they may be located at any

place where a NullStmt is valid, such as the body

of a function. The associated predicate should

hold at that specific point, much like the

assert() macro.

Preconditions. They are used to state function

expectations, i.e. what is expected from the user

and are evaluated at function entry. The

[[expects: …]] attribute is part of a function

declarator; more formally, it appertains to the

function type, although it is not part of it. The

parsed expression may use anything currently in

scope.

Postconditions. Also part of a function declarator, the

attribute [[ensures: …]] specify what the

function ensures after return, i.e. what the user

can expect after the function returns. As such,

they are evaluated before function exit. In

addition to anything in scope, the parsed

expression also has access to the return value.

Any of the previous attributes may optionally include

an assertion level (referred to as 𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑎𝑡𝑡𝑟 below).

This may be one of:

axiom. Not evaluated at runtime, but may be used for

other purposes, e.g. static analyzers or providing

information to the optimizer).

default/audit. Intended to be used to indicate the

relative computational cost of the checks.

A translation is carried out in a specific build level (off,

default, audit). A check is enabled if:

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑎𝑡𝑡𝑟 ≤ 𝐿𝑏𝑢𝑖𝑙𝑑 (1)

Failed checks will by default cause the invoca-

tion of std::terminate(). Invocation of a

user-defined handler is also possible. Optionally,

std::terminate() may also be called after the

user-defined handler returns (if continuation mode is

off).

In a correct program, contracts have no observable ef-

fects beyond performance differences. Also, this is a

convenient way to give additional information to the

optimizer/third party libraries.

Listing 1: C++ contracts example
int f(int x)

[[expects audit: x>0]]

[[ensures r: r>0]] {

/* … */

}

Opportunities for code optimization

Contracts provide additional information about the

programmer’s expectations which may be useful for

the optimization passes.

If the continuation mode is “off”, no special provision is

required for checked contracts, as the violation handler

is implicitly [[noreturn]]. Otherwise, only axiom

contracts may be assumed (but not checked). This can

be enabled by specifying the -axiom-mode=on|off

compiler option.

Assumed contracts cause the emission of a call to

llvm::Intrinsic::assume (the same used by

__builtin_assume()).

Required changes to Clang

Overview
This required changes to some Clang components

(shown in bold face in Figure 1):

xxx.cpp

Lex Parse Sema AST CodeGen

IR

Figure 1: Patched Clang components

Parse. Updated to accommodate the grammar

changes proposed in P0542R5 to support contract

attributes, e.g. [[expects audit: x==2]].

Sema. Most of the code lies here: injecting

declarations, merging attributes, instantiation, etc.

AST. Small changes were done to the ASTContext and

FunctionDecl classes to store additional

information.

CodeGen. Code generation for the [[assert]]

attribute and for checked functions.

The current implementation is publicly available

at https://github.com/arcosuc3m/clang-

contracts/.

Try it at http://fragata.arcos.inf.uc3m.es/.

Generating code for checked functions
Code generation for functions that have

preconditions/post-conditions works as follows:

f GenerateCode(f) …
(2)

g

EmitGlobal(g) …

(1)

Figure 2: CodeGen for checked functions

At (1) the f FunctionDecl is copied; this copy (called

g here) contains the original body of f, and has the

llvm::Attribute::AlwaysInline attribute.

At (2), the body of f is replaced by synthesized code

that evaluates preconditions, makes a (inlined) call to

g, and evaluates post-conditions.

int f(int x)

[[expects: x==2]]

{

return x;

}

define i32 @_Z1fi (i32

returned %x)

local_unnamed_addr #0 {

entry:

% cmp = icmp eq i32 %x, 2

br i1 %cmp, label %if.end,

label %if.then

if.then:

tail call void

@_ZSt9terminatev() #2

unreachable

if.end:

ret i32 2

}

Figure 3: C++ function and its LLVM IR

Evaluation

We replaced occurrences of the __glibcxx_assert

macro found in the GNU implementation of the

std::basic_string class by [[assert: …]]

or [[expects: …]] attributes and compared the

run-time overhead.

Here, we have included the following tests:

Swap two characters of a std::string (10000

iterations) for varying string sizes (Figure 4).

Find 3-char substring and replace each

occurrence in a random string, for varying string

sizes (Figure 5).

 3600

 3700

 3800

 3900

 4000

 4100

 4200

 4300

 4400

 4500

 0 1000 2000 3000 4000 5000 6000

T
im

e
(m

il
li
s
e
c
o
n
d
s
)

String Size(characters)

Benchmark 2(-O2) - Time Comparison

No Contracts Version
Contracts Version

Figure 4: Character swap (-O2)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1000 2000 3000 4000 5000 6000

T
im

e
(m

il
li
s
e
c
o
n
d
s
)

String Size(characters)

Benchmark 6(-O2) - Time Comparison

No Contracts Version
Contracts Version

Figure 5: Replace substring (-O2)

Other interesting uses

On top of a P0542R5-enabled Clang, we built CSV,

an extension to the ThreadSanitizer project that

allows users to describe the semantics of lock-free

data structures using C++ contracts.

The unmodified ThreadSanitizer reported false posi-

tives using a Boost lock-free SPSC queue (only 1 pro-

ducer + 1 consumer). These false positives were filtered

if CSV was in use.

To illustrate this point, we show an excerpt

of the CSV annotations that were added to the

boost::lockfree:spsc_queue class:

Listing 2: boost::lockfree:spsc_queue +CSV
// In header: <boost/lockfree/spsc_queue.hpp>

#include "csv.h"

template <typename T, typename... Options>

class [[csv::checked]] spsc_queue {

private:

[[csv::event_sets(init_events, prod_events,

cons_events,

nts_events)]];

public:

…

bool push(T const &)

[[expects audit: !init_events.empty()

&& init_events.happens_before(csv::

current_event())]]

[[expects audit: !prod_events.concurrent(

csv::current_event())]]

[[csv::add_current(prod_events)]]

bool pop()

[[expects audit: !init_events.empty()

&& init_events.happens_before(csv::

current_event())]]

[[expects audit: !cons_events.concurrent(

csv::current_event())]]

[[csv::add_current(cons_events)]]

…

};

If built with a patched compiler + patched ThreadSan-

itizer, the aforementioned false positives are filtered.

Additionally, if a rule is violated the user gets a de-

scriptive trace.

CSV is open-source and is part of the CSV-src branch

of the clang-contracts GitHub repository.

Conclusion

Support for contract-checking in C++…

Enables to write more correct software by helping

to detect more programming errors.

Is a portable and standard way of providing

information to the optimizer/third party libraries.

†jalopezg@inf.uc3m.es *jdgarcia@inf.uc3m.es

https://github.com/arcosuc3m/clang-contracts/

