
Implementing SPMD control flow in LLVM using
reconverging CFGs
Vectorizing divergent control flow for SIMD applications

Fabian Wahlster
Technical University Munich Department of Informatics
fwahlster@outlook.com — 1 (000) 111 1111

Abstract
Compiling programs for an SPMD execution model, e.g. for GPUs or for whole program vectorization on

CPUs, requires a transform from the thread-level input program into a vectorized wave-level program in which the
values of the original threads are stored in corresponding lanes of vectors. The main challenge of this transform is
handling divergent control flow, where threads take different paths through the original CFG. A common approach,
which is currently taken by the AMDGPU backend in LLVM, is to first structurize the program as a simplification
for subsequent steps.

However, structurization is overly conservative. It can be avoided when control flow is uniform, i.e. not diver-
gent. Even where control flow is divergent, structurization is often unnecessary. Moreover, LLVM’s StructurizeCFG
pass relies on region analysis, which limits the extent to which it can be evolved.

We propose a new approach to SPMD vectorization based on saying that a CFG is reconverging if for every
divergent branch, one of the successors is a post-dominator. This property is weaker than structuredness, and we
show that it can be achieved while preserving uniform branches and inserting fewer new basic blocks than structur-
ization requires. It is also sufficient for code generation, because it guarantees that threads which ”leave” a wave at
divergent branches will be able to rejoin it later.

Reconverging control flow graphs
We argue that the structurization used in LLVM’s StructurizeCFG region pass is too intrusive with
respect to the input control flow. The weaker notion of reconvergence is sufficient for re-joining
diverging threads required to generate wave-level code, while also handling uniform control flow
properly.

Definition 1. A control flow graph is reconverging if every non-uniform condition node (terminator
T) has exactly two successors, one of which post-dominates it (primary successor).

A

D

B

C

(a) Nested reconverging CFG.

A: m = 0

B: m = cond(B -> D)
exec &= ~m

C

D: exec |= m

(b) Nested CFG with incoming uniform edges.

Figure 1: Reconverging CFGs are suitable for lowering to wave-level control flow by inserting instructions for execution
mask manipulation.

The simple definition of a reconverging CFG introduced in this work shows that it’s powerful enough
to effectively lower thread-level to wave-level control flow, solving the common problem of diver-
gence management in code generation for SPMD and SIMT applications. Listing 1 shows the results
of the lowering algorithm based on a reconverging input CFG.

Listing 1: Pseudo GCN ISA predication for control flow of Figure 1a
1 A: // code for A
2 v_cmp_??? s[0:1], ... // initialize re-join mask in m
3 s_andn2_b64 exec, exec, s[0:1] // subtract re-join mask stored in s[0:1]
4 s_cbranch_execz D
5
6 B: // code for B
7 v_cmp_??? vcc, ... // condition for jumping to D
8 s_or_b64 s[0:1], vcc // accumulate re-join mask in m
9 s_andn2_b64 exec, exec, vcc // subtract re-join mask from execution mask

10 s_cbranch_execz D
11
12 C: // code for C
13 D: s_or_b64 exec, exec, s[0:1] // add previously subtracted re-join masks
14 // code for D

Main Contributions
• Concise definition of a reconverging CFG

• Lowering algorithm exploiting the properties of such a CFG

•Algorithm transforming arbitrary and irreducible input CFGs to contain reconvergance points while
also preserving uniform control-flow

• Evaluation of basic block ordering methods used as input of the CFG transformation

A

B C

D

(a) Neither successor B or C post-dominate A.

A

C

FLOW

B

D

(b) Flow block post-dominates A, hence becomes the
primary successor.

Figure 2: CFG of Figure 2a inflicts Definition 1. CFG of Figure 2b is suitable for lowering to wave-level.

Algorithm
The algorithm for vectorizing divergent control flow using the properties of reconverging CFGs con-
sists of the following steps:

1. Make sure a unique sink exists by adding a common virtual exit to be able to merge control flow
from non-uniform branches that lead to different exit nodes.

2. Determine an ordering of the basic blocks based on the topology of the CFG. The correctness of
the following transformation is not affected by the ordering created in this step, but the quality of
the resulting CFG depends on it.

3. Transform the control flow to ensure existence of reconvergence points by adding flow blocks and
rerouting edges accordingly.

4. Inject predication operations to lower the reconverging CFG to wave-level. Optionally keep
scalar branch instructions to skip blocks that would be executed with an empty execution mask.

(a) LLVM IR for CFG of Figure 2a. (b) LLVM IR for CFG of Figure 2b.

Figure 3: Phi instructions need to be insterted at flow blocks to maintain original control flow.

OpenTree structure
The transformation of input CFGs is executed on a bookkeeping structure called OpenTree, short OT.
Open (dotted) edges in the OT are initialized with edges form the input CFG but maybe changed
(rerouted) over the course of the algorithm. Solid light grey edges are closed. Visited nodes have a
black frame, unvisited nodes light grey. Solid black edges symbolize OT parent-child edges. Diver-
gent nodes are called armed (red) if one of the outgoing edges has already been closed.

ROOT

A

C B

(a) Attach A to root node.
Discover C and B.

ROOT

A

B C

D

(b) Attach C as child to
A and close the edge. A
is divergent and becomes
armed. Subforest rooted at
A and C contains multiple
unvisited outgoing edges.

ROOT

A

C FLOW0

B D

(c) Subforest of A and C
is rerouted through new flow
block. Unvisited nodes B
and D become open edges
the inserted block.

ROOT

FLOW0

D

B

(d) B is attached to its low-
est predecessor FLOW0,
leaving only D which will
collapse the OT to contain
only the root node.

Figure 4: Maintaining OT structure for the control flow graph of Figure 2a. Processing basic blocks in order:
A→ C → B → D.

Input orderings
The input ordering of basic blocks affects the quality of generated control flow as it changes when
and how the critical edges are detected and rerouted while processing the nodes of the OpenTree.

DF Conventional depth-first traversal

DFPD Depth-first obeying post-dominance

BF Conventional Breadth-first traversal

RPOT Reverse post order traversal

A

B C

D

E

(a) CFG with uniform
terminator C.

A

B

FLOW0

D

FLOW1

C

E

(b) DF, DFPD and
BFPD.

A

B

FLOW0

C

FLOW1

D

E

(c) BF.

A

FLOW0

C

B

FLOW1

D

E

(d) RPOT.

Figure 5: Influence of input orderings on preserving uniform control flow when reconverging CFG of Figure (a)).

