
ADDING SUPPORT FOR C++ CONTRACTS TO CLANG

…and some thoughts around their application

Javier López-Gómez
8th April 2019

Computer Science and Engineering Department,
University Carlos III of Madrid

Who am I?

A CS PhD. student (Computer Architecture and Technology Area)

Spent some time hacking the Linux kernel, embedded software, electronics…
(low-level stuff!)

Now: working on Clang for the last year

1/27

Agenda

1 Introduction

2 Background

3 Supporting the P0542R5 TS in Clang

4 CSV: an extension to TSan that uses contracts

5 Conclusion

2/27

Agenda

1 Introduction

2 Background

3 Supporting the P0542R5 TS in Clang

4 CSV: an extension to TSan that uses contracts

5 Conclusion

3/27

In C++17…

Compile-time: static_assert(…)
Run-time: C89 assert(…)
…or other (non-standard) user-defined macro/function.

But assert(…) is a macro which expands to nothing for a production build.
This might be improved!

4/27

But in C++20 we might have…

Declaration (probably in a header file):

int f(int x)

[[expects default: x > 0]] // low-cost precondition

[[expects audit: sanity_chk(x)]] // high computational cost

[[ensures ret: ret > 0]]; // postcondition

Definition (in .cpp file):

int f(int x) {

…

}

5/27

Agenda

1 Introduction

2 Background

3 Supporting the P0542R5 TS in Clang

4 CSV: an extension to TSan that uses contracts

5 Conclusion

6/27

The C++ contract TS (P0542R5) (1/5)

P0542R5: a proposal to support contracts in C++.

Contract: the set of preconditions, postconditions and assertions associated to a
function.

Precondition: What are the expectations of the function? —Evaluated at
function entry
[[expects: …]]

Postconditions: What must the function ensure upon termination?
—Evaluated at function exit
[[ensures: …]]

Assertion:

7/27

The C++ contract TS (P0542R5) (1/5)

P0542R5: a proposal to support contracts in C++.

Contract: the set of preconditions, postconditions and assertions associated to a
function.

Precondition: What are the expectations of the function? —Evaluated at
function entry
[[expects: …]]

Postconditions: What must the function ensure upon termination?
—Evaluated at function exit
[[ensures: …]]

Assertion:

7/27

The C++ contract TS (P0542R5) (1/5)

P0542R5: a proposal to support contracts in C++.

Contract: the set of preconditions, postconditions and assertions associated to a
function.

Precondition: What are the expectations of the function? —Evaluated at
function entry
[[expects: …]]

Postconditions: What must the function ensure upon termination?
—Evaluated at function exit
[[ensures: …]]

Assertion:

7/27

The C++ contract TS (P0542R5) (1/5)

P0542R5: a proposal to support contracts in C++.

Contract: the set of preconditions, postconditions and assertions associated to a
function.

Precondition: What are the expectations of the function? —Evaluated at
function entry
[[expects: …]]

Postconditions: What must the function ensure upon termination?
—Evaluated at function exit
[[ensures: …]]

Assertion:

7/27

The C++ contract TS (P0542R5) (1/5)

P0542R5: a proposal to support contracts in C++.

Contract: the set of preconditions, postconditions and assertions associated to a
function.

Precondition: What are the expectations of the function? —Evaluated at
function entry
[[expects: …]]

Postconditions: What must the function ensure upon termination?
—Evaluated at function exit
[[ensures: …]]

Assertion: Do I need to define this?

7/27

The C++ contract TS (P0542R5) (1/5)

P0542R5: a proposal to support contracts in C++.

Contract: the set of preconditions, postconditions and assertions associated to a
function.

Precondition: What are the expectations of the function? —Evaluated at
function entry
[[expects: …]]

Postconditions: What must the function ensure upon termination?
—Evaluated at function exit
[[ensures: …]]

Assertion: Do I need to define this? A predicate that should hold at a
specific location of the function body.
[[assert: …]]

7/27

The C++ contract TS (P0542R5) (2/5)

You can include an assertion level [[assert HERE: …]]…

axiom. Not evaluated at run-time (useful for static analysis/optimizer).
default/audit. Indicate the relative computational cost of the checks.

A translation is carried out in a specific build level (off, default, audit).

8/27

The C++ contract TS (P0542R5) (3/5)

ensures-only: an identifier may be introduced

[[ensures default HERE: …]]

and can be used to refer to the return value of the function.

9/27

The C++ contract TS (P0542R5) (4/5)

By default, a violated contract invokes std::terminate().
Alternatively, the user can specify a handler (per-translation).
std::terminate() may optionally be called after return.

void (const std::contract_violation &); // the type of a handler

class contract_violation {

public:

int line_number() const noexcept;

string_view file_name() const noexcept;

string_view function_name() const noexcept;

string_view comment() const noexcept;

string_view assertion_level() const noexcept;

};

10/27

The C++ contract TS (P0542R5) (4/5)

By default, a violated contract invokes std::terminate().
Alternatively, the user can specify a handler (per-translation).
std::terminate() may optionally be called after return.

void (const std::contract_violation &); // the type of a handler

class contract_violation {

public:

int line_number() const noexcept;

string_view file_name() const noexcept;

string_view function_name() const noexcept;

string_view comment() const noexcept;

string_view assertion_level() const noexcept;

};

10/27

The C++ contract TS (P0542R5) (5/5)

A contract…

…has no observable effect on a correct program (except performance):
UB if side-effects.
…might be a convenient to provide additional information to the
optimizer/3rd-party libraries.

11/27

Agenda

1 Introduction

2 Background

3 Supporting the P0542R5 TS in Clang

4 CSV: an extension to TSan that uses contracts

5 Conclusion

12/27

Required changes to the Clang FE (1/2)

xxx.cpp

Lex Parse Sema AST CodeGen

IR

Figure 1: Patched Clang components

Parse. Updated due to the proposed grammar changes for contract attributes.
Sema. Most of the code is here (Decl injection, merging attributes, instantiation,

etc.)
AST. Small changes to the ASTContext and FunctionDecl classes.
CodeGen. Run-time checks code generation.

13/27

Required changes to the Clang FE (2/2)

(1): copy the f FunctionDecl; the
copy (g) owns the original body of f
will be forced inline.
(2): body of f replaced
(synthesized): evaluates
pre-conditions + calls g + evaluates
post-conditions.

f GenerateCode(f) …(2)g

EmitGlobal(g) …
(1)

Figure 2: CodeGen for functions that have
pre/post-conditions

14/27

Required changes to the Clang FE (3/3)

int f(int x)

[[expects: x==2]];

…

int f(int x) {

return x;

}

define i32 @_Z1fi (i32 returned %x)

local_unnamed_addr #0 {

entry:

% cmp = icmp eq i32 %x, 2

br i1 %cmp, label %if.end,

label %if.then

if.then:

tail call void

@_ZSt9terminatev() #2

unreachable

if.end:

ret i32 2

}

Figure 3: A function (+precondition) and its LLVM IR

15/27

Applying the “p1290r0” fix

ISSUE: Assuming contracts that were not checked was a source of UB.
FIX: Do not assume unchecked contracts (except axiom (depending on the

“axiom mode”)
Added the -axiom-mode= command line option.

16/27

Evaluation (1/2)

What? GNU libstdc++ std::basic_string
How? Replaced the __glibcxx_assert macro by [[assert: …]] or

[[expects: …]] and compared the run-time overhead (10000 iterations).

17/27

Evaluation (2/2)

 3600

 3700

 3800

 3900

 4000

 4100

 4200

 4300

 4400

 4500

 0 1000 2000 3000 4000 5000 6000

T
im

e
(m

il
li
s
e
c
o
n
d
s
)

String Size(characters)

Benchmark 2(-O2) - Time Comparison

No Contracts Version
Contracts Version

Figure 4: Swap characters
(-O2)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1000 2000 3000 4000 5000 6000

T
im

e
(m

il
li
s
e
c
o
n
d
s
)

String Size(characters)

Benchmark 6(-O2) - Time Comparison

No Contracts Version
Contracts Version

Figure 5: Find and replace 3-char substring
in a random string (-O2)

18/27

DEMO: a P0542R5-enabled Clang

Try it: http://fragata.arcos.inf.uc3m.es/

Open-sourced (GitHub)1:
https://github.com/arcosuc3m/clang-contracts/

1To be rebased on top of the current development branch and submitted for code review.

19/27

But wait, that’s not all!

C++ contracts may also be used as annotations for static analyzers (axiom) or to
interface third party libraries.

To prove this point, we built something on top of this…

20/27

Agenda

1 Introduction

2 Background

3 Supporting the P0542R5 TS in Clang

4 CSV: an extension to TSan that uses contracts

5 Conclusion

21/27

ISSUE: TSan and lock-free data structures

ISSUE: ThreadSanitizer reports false positives using a Boost lock-free SPSC queue
(only 1 producer + 1 consumer).

FIX: extend ThreadSanitizer to honour user-defined data structure semantics
(that use C++ contracts).

22/27

CSV: a TSan extension (1/2)

Listing 1: Updated “boost/lockfree/spsc_queue.hpp” to use CSV
#include "csv.h"

template <typename T, typename... Options>

class [[csv::checked]] spsc_queue {

private:

[[csv::event_sets(init_events, prod_events, cons_events, nts_events)]];

public:

…

bool push(T const &)

[[expects audit: !init_events.empty()

&& init_events.happens_before(csv::current_event())]]

[[expects audit: !prod_events.concurrent(csv::current_event())]]

[[csv::add_current(prod_events)]];

…

};

23/27

CSV: a TSan extension (2/2)

==================

WARNING: CSV: rule violation at …/spsc_queue.hpp:854

`!prod_events.concurrent(csv::current_event())`

Stack trace:

#0 __csv_violation_handler /home/…/tsan/rtl/tsan_csv.cc:45

(+0x4915f0)

#1 boost::lockfree::spsc_queue<T>::push(T) <null>

(+0x4b8f99)

…

Figure 6: If a rule is violated the user gets a descriptive trace

24/27

Open Source: TSan—CSV patches

CSV is maintained as a branch (CSV-src) at the clang-contracts repository:
https://github.com/arcosuc3m/clang-contracts/

25/27

Agenda

1 Introduction

2 Background

3 Supporting the P0542R5 TS in Clang

4 CSV: an extension to TSan that uses contracts

5 Conclusion

26/27

Conclusions

Support for contract-checking in C++…

Helps to detect more programming errors (improves correctness).
Run-time checking can be enabled/disabled (Safety—Run-time overhead).
Q: Can I throw an exception/log violations?
A: Use a violation handler!
Portable and standard way of providing information to the optimizer/third
party libraries.

Few issues to be fixed: P0542R5 Sec. 2.3, late-parsing, and contract inheritance.

27/27

Conclusions

Support for contract-checking in C++…

Helps to detect more programming errors (improves correctness).
Run-time checking can be enabled/disabled (Safety—Run-time overhead).
Q: Can I throw an exception/log violations?
A: Use a violation handler!
Portable and standard way of providing information to the optimizer/third
party libraries.

Few issues to be fixed: P0542R5 Sec. 2.3, late-parsing, and contract inheritance.

27/27

Conclusions

Support for contract-checking in C++…

Helps to detect more programming errors (improves correctness).
Run-time checking can be enabled/disabled (Safety—Run-time overhead).
Q: Can I throw an exception/log violations?
A: Use a violation handler!
Portable and standard way of providing information to the optimizer/third
party libraries.

Few issues to be fixed: P0542R5 Sec. 2.3, late-parsing, and contract inheritance.

27/27

Conclusions

Support for contract-checking in C++…

Helps to detect more programming errors (improves correctness).
Run-time checking can be enabled/disabled (Safety—Run-time overhead).
Q: Can I throw an exception/log violations?
A: Use a violation handler!
Portable and standard way of providing information to the optimizer/third
party libraries.

Few issues to be fixed: P0542R5 Sec. 2.3, late-parsing, and contract inheritance.

27/27

Conclusions

Support for contract-checking in C++…

Helps to detect more programming errors (improves correctness).
Run-time checking can be enabled/disabled (Safety—Run-time overhead).
Q: Can I throw an exception/log violations?
A: Use a violation handler!
Portable and standard way of providing information to the optimizer/third
party libraries.

Few issues to be fixed: P0542R5 Sec. 2.3, late-parsing, and contract inheritance.

27/27

Thanks!

Thank you for listening!¿?

https://github.com/arcosuc3m/clang-contracts/ 27/27

	Introduction
	Background
	Supporting the P0542R5 TS in Clang
	CSV: an extension to TSan that uses contracts
	Conclusion

