Clang tools for implementing
cryptographic protocols like OTRv4
Sofia Celi

IR

RECORD MESSAGING

CENTRO DE AUTONOMIA DIGITAL /72

What is OTR and why it was created?

e Cryptographic protocol

e Paperin 2004 by lan Goldberg, Nikita Borisov and Eric Brewer
e (Conversations in the "digital" world should mimic casual real world

conversations

e PGP: protect communications. Sign messages and encrypt them.

e Problems: there is a record,

T VE BEEN POSTING rY
PUBLIC KEY FOR 15 YEARS
NOLJ, BUT NO ONE. HAS
EVER PSKED MEFOR IT
OR USED ITFOR ANYTHING
AS FAR AS T (AN TELL.

MAYBE T
SHOOLD TRY
POSTING MY
FRIVATE KEY

INSTEAD,

O

il

https://xkcd.com/1553/

Why a version 4 of OTR?

We want deniability: participation, message, online and offline

We want forward secrecy and post-compromise secrecy

We want a higher security level

We want to update the cryptographic primitives

We want additional protection against transcript decryption in the case of
ECC compromise

e We want elliptic curves

OTRv4 implementation

e Implementationin C
e C(Called libotr-ng". https://github.com/otrv4/libotr-ng

e Usage of C comes with -free- memory issues:
Buffer overflow

Memory leaks

Free issues: use after free, double free, invalid free
Usage of uninitialized memory or garbage data
Overlap of src and dst pointers in memcpy

e Why itis an issue?

o O O O O

“Memory leaks are mismanaged memory allocations. They are caused by heap
areas that can no longer be freed, due to a lost pointer and are something
every programmer using C has to be careful about. These leaks occur because
C doesn’t clean up after itself, unlike Java or C# with its inbuilt garbage
collector. Memory leaks are hard to find because a program might work just
fine for a while and then crash without apparent reason or simply slow down
below acceptable levels. Sometimes this might be misconstrued as a

hardware problem.”

C Basics And Concepts Memory Leaks and Debugging with Valgrind (2014), Working group scientific
computing Department of informatics Faculty of mathematics, informatics and natural sciences

University of Hamburg
e Leakage of sensitive information: private/secret or message keys
e Memory issues remain dominant (heap out of bounds: read/write. Eg:
Microsoft: Trends, challenge, and shifts in software vulnerability mitigation
(2019) by Matt Miller)

Tips during the project execution

Use free after malloc (or similar)

Not work with the original pointer but rather with a copy of it

Free what has been malloced in a struct

Handle return references

Do not access null pointers: remember to malloc

Usage of valgrind (it has limitations: crashes, false positives on some OS,
installation problems. See: https://bugs.kde.org/show_bug.cgi?id=365327)

For cryptography...

e “any computation, and only computation, leaks information” (Micali and
Reyzin)
e Publicinformation vs Secret information

@ Heartbeat - Normal usage

‘ H e a rt b | e e d Server,send me |
this 4 letter word Server
if you are there: bird

Client "bird”

W Heartbeat - Malicious usage

Server, send me . Server
this 500 letter bird. Server
wordifyouare | Masterkeyis

i there: "bird" 31431498531054.
CLSRE User Carol wants

to change
password to
"password 123"...

Problems in some cryptographic code...

Little to no testing

Code, sometimes, does not run nor compile

Code does not run or compile in certain OS or compilers

Code is difficult to understand

Code is not clean

No usage of tools for checking memory issues or related issues

In the OTRV4 library

e We have a Cl which tests in 12 machines (gcc and clang). Locally, we test
mostly in Linux and MacOS.

e We test with valgrind (memcheck, helgrind, drd), address sanitizers,
clang-tidy, splint, ctgrind

e We check coverage, profiling and style

e We send to check to coverity scan

e In the future: fuzzing, taint analysis

AX_CFLAGS_GCC_OPTION([-Walll)
AX_CFLAGS_GCC_OPTION([-Wextral)
AX_CFLAGS_GCC_OPTION([-Werror])
AX_CFLAGS_GCC_OPTION([-Wformat])
AX_CFLAGS_GCC_OPTION([-Wno-format-extra-args])
AX_CFLAGS_GCC_OPTION([-Wfatal-errors])
AX_CFLAGS_GCC_OPTION([-Wbad-function-cast])
AX_CFLAGS_GCC_OPTION([-Wdiv-by-zero])
AX_CFLAGS_GCC_OPTION([-Wfloat-equall)
AX_CFLAGS_GCC_OPTION([-Wnested-externs])
AX_CFLAGS_GCC_OPTION([-Wpointer-arith])
AX_CFLAGS_GCC_OPTION([-Wredundant-decls])
AX_CFLAGS_GCC_OPTION([-Wstrict-prototypes])
AX_CFLAGS_GCC_OPTION([-Wlogical-op])
AX_CFLAGS_GCC_OPTION([-Wbad-cast—-quall)
AX_CFLAGS_GCC_OPTION([-Wformat-nonliterall)
AX_CFLAGS_GCC_OPTION([-Wbuiltin-memcpy-chk-size])
AX_CFLAGS_GCC_OPTION([-Wfloat-equall)
AX_CFLAGS_GCC_OPTION([-Wundef])
AX_CFLAGS_GCC_OPTION([-Wshadow])
AX_CFLAGS_GCC_OPTION([-Wpointer-arith]l)
AX_CFLAGS_GCC_OPTION([-Wcast-align])
AX_CFLAGS_GCC_OPTION([-Wmaybe-uninitialized])
AX_CFLAGS_GCC_OPTION([-Wlogicalopl)
AX_CFLAGS_GCC_OPTION([-Wno-type-limits])
AX_CFLAGS_GCC_OPTION([-Wnull-dereferencel)
AX_CFLAGS_GCC_OPTION([-Wwrite-strings])
AX_CFLAGS_GCC_OPTION([-Wswitch-default])
AX_CFLAGS_GCC_OPTION([-Wswitch-enum])
AX_CFLAGS_GCC_OPTION([-Waddress—-of-temporary])
AX_CFLAGS_GCC_OPTION([-Warc])

Useful tools

e Address sanitizer:
o Compile time
o Bugs are easier to find

e Useful for finding bugs locally in some OS

e Faster than valgrind

e C(Clearer errors: no repetition, issue is stated in a simple way
‘AddressSanitizer: heap-use-after-free on address’

e Limitations: runs with the tests only; there is no coverage of other paths

e Use then: Clang-tidy with the static analyser

e Easier to understand than splint

e Fixes issues in code not tested: free of data unmalloced, unused variables,
etc.

e Helps with the style and on the team (onboarding to C)

/home/travis/build/otrv4/libotr-ng/src/fragment.c:123:9: warning: 1st function call argument is an uninitialized value [clang-
analyzer-core.CallAndMessage]

free(pieces[i]);
N

Style is important

e Important for clean code: clang-format

e Important to eliminate garbage: unused variables or functions, exposed
functions with no reason, ignored return values..

e Usage of one unifying style: clang-format

e Incorporated into the Ci

Sigh. Forgot code style. Sorry.: Verified Bl 495386 o

, olabini committed 27 days ago +

Verified EL | f625boe <
’j olabini committed 27 days ago ¥

Awful issues

DH keys were released and later tried to be reused

People constantly forget to free (clang-tidy: potential memleak)
Double frees: ‘free too much’

Uninitialized values

Why is needed?

e These tools are needed for cryptographic libraries as they catch errors
that are, sometimes, not seen directly

e Programmers are not perfect

e Valgrind, sometimes, needs a lot of suppressions to run

Find file | Copy path

fun:main

ldeas

now = time(NULL);

otrng_ecdh_keypair_destroy(manager->our_ecdh);

/* @secret the ecdh keypair will last
1. for the first generation: until the ratchet is initialized
2. when receiving a new dh ratchet

*/

if (lotrng_ecdh_keypair_generate(manager->our_ecdh, sym)) {
otrng_secure_free(sym);
return OTRNG_ERROR;

otrng_secure_free(sym);

manager—>last_generated = now;

if (manager->i % 3 == 0) {
otrng_dh_keypair_destroy(manager—>our_dh);

/* @secret the dh keypair will last
1. for the first generation: until the ratchet is initialized
2. when receiving a new dh ratchet

*/

if ('otrng_dh_keypair_generate(manager—>our_dh)) {
return OTRNG_ERROR;

References

1. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D. AddressSanitizer: A
Fast Address Sanity Checker, USENIX. Available at:
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf

2. Working group scientific computing Department of informatics Faculty of
mathematics, informatics and natural sciences. (2014). C Basics And
Concepts Memory Leaks and Debugging with Valgrind, NIST ECC
workshop. Available at:
https://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester
_2014/cgk-14-menck-memory-leaks-report.pdf

Thanks!

Sofia Cel,
@cherenkov d

CENTRO DE AUTONOMIA DIGITAL 772\

