
Clang tools for implementing 
cryptographic protocols like OTRv4

Sofía Celi



What is OTR and why it was created?

● Cryptographic protocol
● Paper in 2004 by Ian Goldberg, Nikita Borisov and Eric Brewer
● Conversations in the "digital" world should mimic casual real world 

conversations
● PGP: protect communications. Sign messages and encrypt them.
● Problems: there is a record, there is a ‘proof’ of authorship.

 

https://xkcd.com/1553/

 



Why a version 4 of OTR?

● We want deniability: participation, message, online and offline
● We want forward secrecy and post-compromise secrecy
● We want a higher security level
● We want to update the cryptographic primitives
● We want additional protection against transcript decryption in the case of 

ECC compromise
● We want elliptic curves



OTRv4 implementation

● Implementation in C
● Called ‘libotr-ng’: https://github.com/otrv4/libotr-ng
● Usage of C comes with -free- memory issues:

○ Buffer overflow
○ Memory leaks
○ Free issues: use after free, double free, invalid free
○ Usage of uninitialized memory or garbage data
○ Overlap of src and dst pointers in memcpy

● Why it is an issue? 



“Memory leaks are mismanaged memory allocations. They are caused by heap 
areas that can no longer be freed, due to a lost pointer and are something 
every programmer using C has to be careful about. These leaks occur because 
C doesn’t clean up after itself, unlike Java or C# with its inbuilt garbage 
collector. Memory leaks are hard to find because a program might work just 
fine for a while and then crash without apparent reason or simply slow down 
below acceptable levels. Sometimes this might be misconstrued as a 
hardware problem.”

- C Basics And Concepts Memory Leaks and Debugging with Valgrind (2014), Working group scientific 
computing Department of informatics Faculty of mathematics, informatics and natural sciences 

University of Hamburg

● Leakage of sensitive information: private/secret or message keys
● Memory issues remain dominant (heap out of bounds: read/write. Eg: 

Microsoft: Trends, challenge, and shifts in software vulnerability mitigation 
(2019) by Matt Miller)



Tips during the project execution

● Use free after malloc (or similar)
● Not work with the original pointer but rather with a copy of it
● Free what has been malloced in a struct
● Handle return references
● Do not access null pointers: remember to malloc
● Usage of valgrind (it has limitations: crashes, false positives on some OS, 

installation problems. See: https://bugs.kde.org/show_bug.cgi?id=365327)



For cryptography...

● “any computation, and only computation, leaks information” (Micali and 
Reyzin)

● Public information vs Secret information
● Heartbleed



Problems in some cryptographic code...

● Little to no testing
● Code, sometimes, does not run nor compile
● Code does not run or compile in certain OS or compilers
● Code is difficult to understand
● Code is not clean
● No usage of tools for checking memory issues or related issues



In the OTRv4 library

● We have a CI which tests in 12 machines (gcc and clang). Locally, we test 
mostly in Linux and MacOS.

● We test with valgrind (memcheck, helgrind, drd), address sanitizers, 
clang-tidy, splint, ctgrind

● We check coverage, profiling and style
● We send to check to coverity scan
● In the future: fuzzing, taint analysis





Useful tools

● Address sanitizer: 
○ Compile time
○ Bugs are easier to find

● Useful for finding bugs locally in some OS
● Faster than valgrind
● Clearer errors: no repetition, issue is stated in a simple way 

‘AddressSanitizer: heap-use-after-free on address’
● Limitations: runs with the tests only; there is no coverage of other paths



● Use then: Clang-tidy with the static analyser 
● Easier to understand than splint
● Fixes issues in code not tested: free of data unmalloced, unused variables, 

etc.
● Helps with the style and on the team (onboarding to C)



Style is important

● Important for clean code: clang-format
● Important to eliminate garbage: unused variables or functions, exposed 

functions with no reason, ignored return values..
● Usage of one unifying style: clang-format
● Incorporated into the CI



Awful issues

● DH keys were released and later tried to be reused
● People constantly forget to free (clang-tidy: potential memleak)
● Double frees: ‘free too much’
● Uninitialized values



Why is needed?
● These tools are needed for cryptographic libraries as they catch errors 

that are, sometimes, not seen directly
● Programmers are not perfect
● Valgrind, sometimes, needs a lot of suppressions to run



Ideas



References
1. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D. AddressSanitizer: A 

Fast Address Sanity Checker, USENIX. Available at: 
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf

2. Working group scientific computing Department of informatics Faculty of 
mathematics, informatics and natural sciences. (2014). C Basics And 
Concepts Memory Leaks and Debugging with Valgrind, NIST ECC 
workshop. Available at: 
https://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester
_2014/cgk-14-menck-memory-leaks-report.pdf



Thanks!
Sofía Celi
@cherenkov_d


