A Tale of Two ABIs:
ILP32 on AArch64

Tim Northover
Apple Inc

Introduction

 We regularly tell people that LLVM IR is target dependent.
e But what if you could design your targets?

e Meet armv7k and arm64 32.

Outline

e Generic target-dependence of LLVM IR

e« Some of the steps we took to make our chosen ABIs work
together.

* How AArch64 addressing modes work in ILP32 mode on
LLVM.

ABIl and IR

Compatibility

IR is Target Dependent:
Structs

e Datalayout specifies alignment of fields in structs & arrays.
e sizeof bakes this into the IR.
 There are at many different ways to handle bitfields.

* Does the type of a field affect alignment?
* Do zero-width fields force alignment?

* Do they force 4-byte alignment regardless of type?

IR Is Target Dependent:
Function Calls

Clang decides how to pass all function parameters, with
intimate knowledge of the ABI and the backend.

Largely involves input C or C++ type, and output an LLVM
type.

Can also insert unnamed padding types, for example to
satisfy alignment types.

Also various flags: indirect, “byval”, “inreg”.

Function Call Examples

struct Foo { int64_t a; };
e Clang chooses 164, LLVM uses register or 64-bit aligned stack slot.

struct Foo { int a, b; };

e Clang chooses 164 since it has the same requirements.
struct Foo { int64_t arr([4]; };

e Too big, clang chooses %sstruct Foox, in space allocated by calle

struct Foo { double arr[4]; };

 “Homogeneous Floating Aggregate”. Same size, but Clang
chooses [4 x double].

IR Is Target Dependent:
Miscellaneous

C++ name mangling reveals types of int32_t:isitint or
long?

NEON SIMD intrinsics map to @L Lvm. arm. x* calls.
Inline assembly is right out.

Headers produce platform specific type definitions: how
much room for registers is there in ympbuf_t?

Backwards

e Design both ABIs at the same time to carefully sidestep
these issues.

e Both must be ILP32 or LP64, and ILP32 makes more
sense.

e Start with reasonably sensible 64-bit ABI and try to
produce 32-bit ABl that produces IR which compiles in the
same way. Some compromises have to be made on 32-bit
side.

Implications for armv 7k

Closer to AArch64 ABI, even when it doesn’t necessarily
make sense for 32-bit ARM on its own.

Types bigger than 16-bytes must be passed indirectly
(compared to 4 on normal ARM).

HFAs must be passed as such to IR, and use AArch64
rules.

v

' " LS r
. .

armo4 32

* |IR passes to translate ARM intrinsics to AArch64
equivalents.

e Special handling for array types.

Passing Structs

ct Foo { int a, b; }; arm64

ct Bar { long long a }; declare void @takeFoo(i32 %r@, i64 %rl_r2)
takeFoo(int r@, Foo rl._r2); declare void @takeBar(i32 %r@, i64 %r2_r3)
takeBar(int r@, Bar r2_r3);

declare atakeFool 132 =19, 164 =11 123
declare void @takeBar(i32 %r@, i64 %r2_r3)

%r1_r2 would go inr2 and r3 on ARM.

armv7k

_ >

declare void @takeFoo(i32 %r@, i64 %rl_r2)
declare o @takeBar(i32 %r@, 132, 164 5%r:

%r2_r3 would go in x2 on AArch64.

declare void @takeFoo(i32 %r@, [2 x i32] %
declare void @takeBar(i32 %r@, i64 %r2_r3)

%r1_r2 wanubtigppoi imed aaroth 22 com AdnadiBy.
But that’s only convention

armo4 32

 Still got bitfields wrong.

e Didn’t anticipate Swift assuming i64 is returned the same
way as [2 x i32]. Used one variant in Swift CodeGen,
another in C++ implementation.

e \NET used grey area calling conventions that aren’t really
supported.

ILP32 Implementation

NIEGFICERE

define i32 @load(i32x% %base, 132 %n) {
%elt = getelementptr inbounds 132, 132% %base, 132 %n
%val = load 132, 132% %elt
ret 132 %val

}

In principle this is perfect for AArch64’s addressing modes

+

(add i64:

IN \/ I\/

Q. If base is in a 32-bit register, what are in the
high bits?

A. Usually nothing, but very difficult to prove it.

Q. If we do know the high bits of base are clear, should we
zext or sext the shifted value before adding?

A. Impossible to say without knowing (dynamic) wrapping
behaviour. Even nuw and nsw are no help.

Oxffff_ffff + Oxffff_ffff => sext
0x0000_0000 + Oxffff_ffff => zext

\'

The Solution

Make pointers i64 when in the DAG.
Zero-extend at every load, truncate at every store.
Inbounds GEPs get lowered to plain 64-bit arithmetic.

Wrapping GEPs have to mask off high bits after that
arithmetic.

Signed comparisions special.

Not just implementing new target, had to verify
compatibility.

Built test-suite with $RANDOM target (arm64_32 or armv7k
-> arm64_32).

Mixed and matched system frameworks and libraries.

Direct App testing found the Swift issue.

Questions?

