
Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Sulong

Roland Schatz Josef Eisl
Sulong Team Lead Sulong Team
@rschatz_at @zapstercc

GraalVM, Oracle Labs

April 9, 2019

An experience report of using the "other end" of LLVM in GraalVM

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. Oracle reserves the right to alter its
development plans and practices at any time, and the development, release, and timing
of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

3

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

•LLVM Bitcode execution engine

What is Sulong?

• Think: lli

• Interpretation and JIT-compilation

6

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What is the Goal of Sulong?

Execute “low-level/unsafe” languages on
GraalVM

C, C++, Fortran, Rust, (Swift?)

8

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

standalone

Automatic transformation of interpreters to compilers

Embeddable in native and managed applications

9

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 10

GraalVM Stack

Graal Compiler

Truffle Framework

LLVM IR

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 11

Sulong Pipeline

Ahead of Time

Run Time

Truffle Framework

Sulong

Clang

Graal Compiler

Truffle AST

Graal IR

LLVM IR

C / C++

Machine Code

Interpreter execution

Compiled Code execution

Just in Time
(hot code only)

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Sulong on Github

https://github.com/oracle/graal/tree/master/sulong
12

https://github.com/oracle/graal/tree/master/sulong

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Sulong on Github

https://github.com/oracle/graal/tree/master/sulong
13

https://github.com/oracle/graal/tree/master/sulong

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Fast Cross-language Interoperability

• The world is polyglot!

• Shared Interoperability Interface

– “Implement once, talk to many!”

18

CC-BY-SA-3.0 David Spalding

Truffle Framework

LLVM IR

http://creativecommons.org/licenses/by-sa/3.0/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Live Demo

19

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

function add(a, b) {
var result = {r:0, i:0};

result.r = a.r + b.r;

result.i = a.i + b.i;

return result;
}

Interoperability (Truffle Approach)

a->r

a->i

read

a 8

read

b “i”

write

“i”result +

C AST Nodes

JS AST Nodes

20

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Interoperability (Truffle Approach)

write

“i” +

read

a
8

read

b 8

result
write

“i” +

read

a
8

read

b “i”

result
Single machine
code function

21

function add(a, b) {
var result = {r:0, i:0};

result.r = a.r + b.r;

result.i = a.i + b.i;

return result;
}

a->r

a->i

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Truffle Framework

Sulong

Foreign Function Interfaces (FFI)

26

• Most non-trivial languages have an FFI

– Usually native code (C/C++/Fortran)

• Accessing interpreter data structures

– Implementation details become API 

• Sulong to the rescue!

– Access language objects instead of
C structs

/* Dictionary object type */
typedef struct {

PyObject_HEAD

Py_ssize_t ma_used;

uint64_t ma_version_tag;

PyDictKeysObject *ma_keys;

PyObject **ma_values;
} PyDictObject;

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What is the Goal of Sulong? (cont.)

Support native language extensions

Python, Ruby, NodeJS, R, ...

28

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 30

Sulong Pipeline

Ahead of Time

Run Time

Truffle Framework

Sulong

Clang

Graal Compiler

Truffle AST

Graal IR

LLVM IR

C / C++

Machine Code

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Compile Native Projects to Bitcode

clang -c -emit-llvm main.c

32

Single-file programs

Clang

LLVM IR

C / C++

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Compile Native Projects to Bitcode

$ clang -emit-llvm main.c foo.c

clang: error: -emit-llvm cannot be used when linking

$ clang -c -emit-llvm main.c

$ clang -c -emit-llvm foo.c

$ llvm-link main.bc foo.bc -o out.bc

37

Mutli-file programs

Clang

LLVM IR

C / C++

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Native Build Systems

Native build systems are manifold and not under our control

• Makefile

CC=clang CFLAGS=-emit-llvm LD=llvm-link (?)

• How about Python native extensions?

41

Clang

LLVM IR

C / C++

from distutils.core import setup, Extension

module1 = Extension('demo',
define_macros = [('MAJOR_VERSION', '1'),
('MINOR_VERSION', '0')],
include_dirs = ['/usr/local/include'],
libraries = ['tcl83'],
library_dirs = ['/usr/local/lib'],
sources = ['demo.c'])

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Native Build Systems

NumPy’s setup is parsing object files
setup_common.py

43

Clang

LLVM IR

C / C++

def long_double_representation(lines):
"""Given a binary dump as given by GNU od -b,
look for long double representation."""

https://github.com/numpy/numpy

https://github.com/numpy/numpy

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Compile Native Projects to Bitcode

$ clang -c -fembed-bitcode foo.c

$ clang -c -fembed-bitcode main.c

$ clang -fembed-bitcode main.o foo.o -o a.out

$ objcopy -O binary -j .llvmbc a.out out.bc

$ lli out.bc

lli: out.bc: error: Malformed block

bitcode section concatenated, not llvm-linked 

49

Mutli-file programs

Clang

LLVM IR

C / C++

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Compile Native Projects to Bitcode

$ clang -c -flto main.c

$ clang -c -flto foo.c

$ clang -fembed-bitcode -flto main.o foo.o -o a.out

no bitcode section 

53

Mutli-file programs

Clang

LLVM IR

C / C++

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

3rd Party Solutions for Compiling to Bitcode

59

Clang

LLVM IR

C / C++

• wllvm, gllvm wrappers \o/

– Compiler flags fiddling is cumbersome

– extract-bc hard to integrate in build scripts

– Unsupported corner cases (e.g., cross-compilation)

• Darwin Linker supports embedding bitcodes

– via embedded bundles

• Custom wrapper code

– E.g. in our GraalPython public class GraalPythonCC
extends GraalPythonCompiler
{...}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

RFC: LLD + LTO + --embed-bitcode

• Teach LLD to embed bitcode during LTO

$ clang -c -flto main.c

$ clang -c -flto foo.c

$ clang -fuse-ld=lld -Wl,--embed-bitcode main.o

foo.o -o a.out # \o/

• Patch currently under evaluation

– Planning to contribute it to upstream (if wanted)

64

Clang

LLVM IR

C / C++

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Compiling Fortran to Bitcode

• Fortran is popular in native extensions

• DragonEgg is outdated 

• Looking forward to f18 

68

Clang / ???

LLVM IR

C / C++ / Fortran

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Conclusion

71

https://www.graalvm.org

https://www.graalvm.org/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 72

