Sulong

An experience report of using the "other end" of LLVM in GraalVM

W

Roland Schatz Josef Eisl
Sulong Team Lead Sulong Team
@rschatz_at @zapstercc

GraalVM, Oracle Labs
April 9, 2019

Q ®
OR CI—G Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. Oracle reserves the right to alter its
development plans and practices at any time, and the development, release, and timing
of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What is Sulong?

LLVM Bitcode execution engine

* Think: 111

SUIong * Interpretation and JIT-compilation

ORACLE

What is the Goal of Sulong?

Execute “low-level/unsafe” languages on

o GraalvVM

C, C++, Fortran, Rust, (Swift?)

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

!
= Java
$Fscala KKotlin | JS

Automatic transformation of interpreters to compilers

GraalVVi.

Embeddable in native and managed applications

Open|DK I'I‘de ORACLE R standalone

Database MysaoL®

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

GraalVM Stack

’Scala K Kotlin :j-_% Javar

@ python’ aRuby R JS

c®

LLVM IR

S

Ne

v

ulong

Truffle Framework

Graal Compiler

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

10

Sulong Pipeline

Ahead of Time

Run Time

Just in Time

(hot code only)

ORACLE

C/C++

o

LLVM IR
4

Sulong

|
Truffle AST
v

Truffle Framework

Graal IR
v

Graal Compiler

v
Machine Code

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Interpreter execution

Compiled Code execution

ORACLE

Sulong on Github Labs

mrigger

Ixp

tzezula

ORACLE

grimmerm

cosminbasca

christianhaeubl

jkreindl

1

SwapnilGaikwad eregon gilles-duboscq

entlicher sanzinger

aa-rdvark179 fniephaus christianwimmer flortsch

J

anatoll234

2 da

akhi3030

mzachh

YU

JOHANNES KEPLER
UNIVERSITY LINZ

chumer

Godin

mikehearn

MANCHESTER

1824
The University of Manchester

lukasstadler zapster

zslajchrt bobvandette

vjovanov

https://github.com/oracle/graal/tree/master/sulong

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

fangerer

rmosaner

thomaswue

12

https://github.com/oracle/graal/tree/master/sulong

orAaCLE JWU

Sulon g on Github Labs IUMMESKERLER e Unverstyof Mandhester

LLVM IR IN GRAALVM:
Gl |~ o MULTI-LEVEL, POLYGLOT
i d DEBUGGING WITH SULONG

! . K !
= 1T B

Ixp timfel SwapnilGaikwad » eregon Jacob Kreindl

2019 European LLVM Developers’ Meeting, April 8-9, 2019

entlicher

EEEEEEEEEEEEEE Labs
UNIVERSITY LINZ

JYU ORACLE

b.1&

fniephaus christianwimmer flortsch mzachh mikehearn vjovanov

https://github.com/oracle/graal/tree/master/sulong

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

13

https://github.com/oracle/graal/tree/master/sulong

Fast Cross-language Interoperability

* The world is polyglot!
* Shared Interoperability Interface @
— “Implement once, talk to many!” @ C
N/
| LLVM IR
4&*/
@, python’ aRuby R JS SU[Ong

i(S .
=’]ava Truffle Framework

CC-BY-SA-3.0 David Spalding

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

18

http://creativecommons.org/licenses/by-sa/3.0/

Live Demo

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

19

Interoperability (Truffle Approach)

JS AST Nodes

C AST Nodes

ORACLE

function add(a, b) {
var result = {r:0, i:0};

result.r = a->r + b.r;

[result.i = a->i + b.i;]

return result;

}

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

20

Interoperability (Truffle Approach)

write function add(a, b) {

i S|ng|e maCh|ne var result = {r:0, i:0};
code function result.r

[result.i = a->i + b.i;]

result

a->r + b.r;

return result;

}

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 21

Foreign Function Interfaces (FFl)

* Most non-trivial languages have an FFI

— Usually native code (C/C++/Fortran) {

_ _ PyObject HEAD

* Accessing interpreter data structures
ma_used;

— Implementation details become APl ®
ma_version_tag;

&, python’
* Sulong to the rescue!

PyDictKeysObject *ma_keys;

— Access language objects instead of :
C structs PyObject **ma_values;
} PyDictObject;

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

26

What is the Goal of Sulong? (cont.)

‘ Execute “low-level/unsafe” languages on
GraalVM

C, C++, Fortran, Rust, (Swift?)
Support native language extensions

Python, Ruby, NodelS, R, ...

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

28

Sulong Pipeline

Ahead of Time

Run Time

ORACLE

Truffle AST
v

Truffle Framework

Graal IR
v

Graal Compiler

v
Machine Code

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

30

Compile Native Projects to Bitcode
Single-file programs

clang -c -emit-1llvm main.c

ORACLE

C/C++

o

LLVM IR

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

32

Compile Native Projects to Bitcode
Mutli-file programs

$ clang -emit-1lvm main.c foo.c

clang: error: -emit-1llvm cannot be used when linking

$ clang -c -emit-1lvm main.c

$ clang -c -emit-1lvm foo.c

$ 1lvm-link main.bc foo.bc -0 out.bc

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

C/C++

LLVM IR

37

Native Build Systems

Native build systems are manifold and not under our control
* Makefile

CC=clang CFLAGS=-emit-1llvm LD=1l1lvm-1link (?)
* How about Python native extensions?

distutils.core setup, Extension

modulel = Extension(
define_macros
(
include_dirs
libraries = |
library dirs
sources = [

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

C/C++

LLVM IR

41

Native Build Systems

NumPy’s setup is parsing object files

setup_common.py

long double representation(lines):

https://github.com/numpy/numpy

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

C/C++

LLVM IR

43

https://github.com/numpy/numpy

Compile Native Projects to Bitcode
Mutli-file programs

$ clang -c -fembed-bitcode foo.c

$ clang -c -fembed-bitcode main.c

$ clang -fembed-bitcode main.o foo.o -0 a.out
$ objcopy -0 binary -j .llvmbc a.out out.bc

$ 11i out.bc

11i: out.bc: error: Malformed block

bitcode section concatenated, not llvm-linked ®

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

C/C++

LLVM IR

49

Compile Native Projects to Bitcode
Mutli-file programs

$ clang -c -flto main.c
$ clang -c -flto foo.c

$ clang -fembed-bitcode -flto main.o foo.o -0 a.out

no bitcode section ®

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

C/C++

LLVM IR

53

3" Party Solutions for Compiling to Bitcode

» wllvm, gllvm wrappers \o/
— Compiler flags fiddling is cumbersome
— extract-bc hard to integrate in build scripts C/ CHt

* Darwin Linker supports embedding bitcodes “

—via embedded bundles LLVM IR

— Unsupported corner cases (e.g., cross-compilation)

* Custom wrapper code

—E.g. in our GraalPython
{...}

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

59

RFC: LLD + LTO + --embed-bitcode
* Teach LLD to embed bitcode during LTO

$ clang -c -flto main.c
$ clang -c -flto foo.c

$ clang -fuse-1d=11d -Wl,--embed-bitcode main.o

f00.0 -0 a.out # \o/

* Patch currently under evaluation

— Planning to contribute it to upstream (if wanted)

ORACLE

C/C++

o

LLVM IR

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

64

Compiling Fortran to Bitcode

* Fortran is popular in native extensions

[scipy / scipy ©wWatch~ 306 Wrstar 5622 | YFork 2749

¢» Code Issues 1,212 Pull requests 215 Projects 0 Wiki Insights

Scipy library main repository hitps://scipy.org/scipylib/

@ Python 53.9% ® Fortran 24.8% ®C19.0% ®C++2.1% o TeX0.2% ® MATLAB 0.0%

 DragonEgg is outdated ®

* Looking forward to f18 ©

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

C / C++ / Fortran

LLVM IR

68

Conclusion

ORACLE

Home Docs Downloads

GraalVM.

Run Programs Faster Anywhere

WHY GRAALVM ‘

High-performance
polyglot VM

communy @ €3

GraalVM is a universal virtual machine for running
applications written in JavaScript, Python, Ruby, R, JVM-
based languages like Java, Scala, Kotlin, Clojure, and

LLVM-based languages such as C and C++.

https://www.graalvm.org

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

71

https://www.graalvm.org/

Integrated Cloud

Applications & Platform Services

ORACLE

ORACLE

