
www.huawei.com

Security Level:

HUAWEI TECHNOLOGIES CO., LTD.

An Anatomy of Optimized Matrix

Multiplication in AArch64

Haochen Wang, Tomasz Czajkowski, Ehsan Amiri

Huawei’s Bisheng compiler team, developed from the llvm-project

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 2

Motivation

 There are many mature techniques for matrix multiplication:

 Tiling and Packing

 Steven Muchnick; Muchnick and Associates (15 August 1997). Advanced Compiler Design Implementation. Morgan Kaufmann. ISBN 978-1-

55860-320-2. tiling.

 MIT 6.172 Performance Engineering of Software Systems, Fall 2018 Instructor: Charles Leiserson. Lecture 1. Introduction and Matrix

Multiplication

 Vectorization and SIMD instructions

 Optimizing C Code with Neon Intrinsics (arm.com). https://developer.arm.com/documentation/102467/0100/Matrix-multiplication-example

 https://developer.arm.com/architectures/instruction-sets/intrinsics/

 Outer product expansion

 Kurzak, Jakub & Gates, Mark & Yarkhan, Asim & Yamazaki, Ichitaro & Wu, Panruo & Luszczek, Piotr & Finney, Jamie & Dongarra, Jack.

(2018). Parallel BLAS Performance Report.

 But their effectiveness doesn't scale well over a wide range of matrix sizes.

 We present our work on choosing the appropriate techniques for different matrix sizes, and how to best combine

the techniques and sizes together.

https://developer.arm.com/architectures/instruction-sets/intrinsics/

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 3

Matrix Multiplication (MM)

 Widely used in many algorithms

 Solver of linear equation systems

 Training machine learning models

 Rendering computer graphics

 C+=A*B

 Double precision floating point

 Single-thread

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 4

Performance Results

* For the ease of tabulating performance results, only square MM performance measurements are shown. Rectangular MM of

similar sizes have similar performance.

* GFLOPs = giga (10^9) floating-point operations per second

Matrix size Performance (GFLOPs)

128 9.92

512 9.50

1024 9.12

1536 9.88

2048 9.90

2560 9.93

3072 9.94

3584 9.95

4096 9.97

32768 (= 2^15) 9.89

• Theoretical maximum for the testing machine is

10.4 GFLOPs (double precision)

• Single-thread

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 5

Why is MM so slow?

 Unnecessary reloads: the same

source data undergoing multiple

load instructions. O(n3) loads from

each matrix.

 At least one of the source

matrices breaks cache locality

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 6

Countering reloads

 The more registers you have, the fewer reloads you have to do.

 Want to exploit all the available registers

 We talk about AArch64 in this talk. It has 32 vector registers available, each can hold

2 doubles (128 bits)

 NEON

 https://developer.arm.com/architectures/instruction-sets/intrinsics/

 If matrix is small enough, then all matrix elements can be held inside these registers.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 7

Increasing matrix size

4x4

- All matrix elements can

fit in vector registers

entirely

- No need for reloads at

all

128x128

- Need reloads into

vector registers as we

have more matrix

elements

- Any way to avoid some

of these reloads?

- Cache locality isn’t that

bad yet

1024x1024 (and higher)

- Cache locality

degrades drastically

- Tiling/packing are

needed

The MM Hierarchy

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 8

The small: 4x4 MM

Fits entirely in the registers

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 9

The 4x4 microcore

 32 vector registers on AArch64, 2 doubles each

 8 regs for A, 8 regs for C, 16 regs for B; each element loaded just once

 Reminder: column major order

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 10

The 4x4 microcore

dup v30.2d, b00

dup v31.2d, b10

…

load v0.2d, (a00, a10)

load v2.2d, (a01, a11)

load v1.2d, (c00, c10)

…

// every matrix element fits in the vec regs, no reloads whatsoever

fmla v1.2d, v0.2d, v30.2d

fmla v1.2d, v2.2d, v31.2d

……

store v1.2d, (c00, c10)

….

%1 = load <2 x double>, …

%2 = call <2 x double> @llvm.fma.v2f64(…, …)

store <2 x double>, …

* To accomplish dup, might need help from extractelement, insertelement, shufflevector

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 11

The medium: 128x128 MM

Any way to avoid some of these reloads?

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 12

Outer Product Expansion (OPE)

 Matrix multiplication can be done in arbitrary blocks, as long as the blocks

are of legal dimensions. In the example A, B, C, D can be plain numbers or

matrices.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 13

Outer Product Expansion (OPE)

p=0 p=1

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 14

Outer Product Expansion (OPE)

 The (m,n)-th element in the product

= inner product between m-th row of A

and n-th col of B

But this inner product only has one item, so it’s just a

single multiplication.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 15

Outer Product Expansion (OPE)

 The (m,n)-th element in the product

= inner product between m-th row of A

and n-th col of B

But this inner product only has one item, so it’s just a

single multiplication.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 16

Outer Product Expansion (OPE)

 The (m,n)-th element in the product

= inner product between m-th row of A

and n-th col of B

But this inner product only has one item, so it’s just a

single multiplication.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 17

Outer Product Expansion (OPE)

 The (m,n)-th element in the product

= inner product between m-th row of A

and n-th col of B

But this inner product only has one item, so it’s just a

single multiplication.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 18

OPE inherently supports loop invariant code motion

this_B

Inspect the p=0 outer product

for (i in the current B row):

this_B = B(i,p=0)

for (j in the current A col):

C(i,j) += A(i,j)*this_B

• The load of B(i,0) is lifted from the innermost loop

• Each B(i,p) is loaded only once! O(n2) loads from B.

• A single outer product has O(n2) loads from A, so a total of O(n3) loads from A
for n outer products in the whole MM

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 19

OPE inherently supports loop invariant code motion

this_B

Inspect the p=0 outer product

for (i in the current B row):

this_B = B(i,p=0)

for (j in the current A col):

C(i,j) += A(i,j)*this_B

• The load of B(i,0) is lifted from the innermost loop

• Each B(i,p) is loaded only once! O(n2) loads from B.

• A single outer product has O(n2) loads from A, so a total of O(n3) loads from A
for n outer products in the whole MM

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 20

OPE inherently supports loop invariant code motion

this_B

Inspect the p=0 outer product

for (i in the current B row):

this_B = B(i,p=0)

for (j in the current A col):

C(i,j) += A(i,j)*this_B

• The load of B(i,0) is lifted from the innermost loop

• Each B(i,p) is loaded only once! O(n2) loads from B.

• A single outer product has O(n2) loads from A, so a total of O(n3) loads from A
for n outer products in the whole MM

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 21

How about loads from C?

Outer product procedure:

1. Do the p-th outer product and store into C in main memory.

for i:

for j:

C(i, j) += …

2. Switch to the next outer product (p++).

A total of O(n3) loads from C

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 22

Benefits from OPE

 O(n3) loads from A and C, O(n2) loads from B

 Try further reducing A and C loads

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 23

A (mx4)x(4xn) outer product

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 24

 Do 4x4 matrix fma with all entries from A, B and C loaded only once, with the 4x4 microcore.

Then the outer product looks like this.

 Of course, lift the loads from B for the same mx4 column of A

96 loads fewer!

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 25

Loop Invariant Code Motion, the 4x4 version

move the 4x4 from B into vec reg, takes up 16 regs

for (a 4x4 in the mx4 column of A){

load the 4x4 from A and C, takes up 8 regs each

do the 4x4 MM

}

 Exploiting fully out of the 32 vec regs!
unroll, prefetch, …

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 26

Results of the first version

Matrix size Performance (GFLOPs)

128 10.0

512 8.2

1024 7.8

1536 7.7

2048 6.9

• This version is very fast at small sizes but degrades very quickly.

• Use as a 128x128 macrocore!

• Theoretical maximum for the testing machine

is 10.4 GFLOPs (double precision)

• Single-thread

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 27

The large: 1028x1028 MM

Cache considerations and tiling

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 28

The problem: column jumps are too big when loading

 Here the (a00, a10) and (a01, a11) register loads are 128/2048 addresses

apart in main memory if the matrix size is 128/2048.

 Bad caching due to poor special locality

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 29

Using temporary arrays for macrocore

 Therefore we want to do the entire 2048x2048 MM in 128x128 blocks.

 Specifically, we want three temporary arrays:

 cur_a = (double *)malloc(sizeof(double)*128*128);

 cur_b = (double *)malloc(sizeof(double)*128*128);

 cur_c = (double *)malloc(sizeof(double)*128*128);

 … pack the 128x128 blocks into these temporary arrays, and use the first

method on these temporary arrays. We want to do this because we know

the first method is fast (10G!) on 128x128 arrays.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 30

How to schedule the 128x128 macrocores?

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 31

How to schedule the 128x128 macrocores?

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 32

How to schedule the 128x128 macrocores?

Tile size

Tile size

=512

=512

Each tile has 4 macrocore-sized row/column panels

double * a_pack

double * b_pack

320 loads fewer!

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 33

How to schedule the 128x128 macrocores?

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 34

Packing the tiles

 Problem with packing of the tiles: need an extra load from the tile’s packing array to

temporary 128x128 arrays

 To illustrate, imagine a macrocore size of 2x2, and a tile size of 4.

 Each tile has 2 rows/columns of macrocore sized panels.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 35

Packing the tiles

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 36

Packing the tiles

double * a_pack

(size = 4*8)

double * b_pack

(size = 8*4)

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 37

Packing the tiles

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 38

Packing the tiles

double * cur_a

(size = 2*2)

double * cur_b

(size = 2*2)

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 39

Packing the tiles

double * cur_a

(size = 2*2)

double * cur_b

(size = 2*2)

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 40

Packing the tiles

double * cur_a

(size = 2*2)

double * cur_b

(size = 2*2)

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 41

Packing the tiles

double * cur_a

(size = 2*2)

double * cur_b

(size = 2*2)

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 42

Packing the tiles

 Need to load from the pack arrays into cur_a and cur_b arrays, since the 2x2 macrocores

are not in contiguous locations in the pack

Note: the numbers in this figure are addresses

within the packing array, not values of matrix

elements.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 43

Packing the tiles

• No need to load from the packing arrays into cur_a and cur_b arrays, since the 2x2
macrocores are in contiguous locations in the pack.

• To go to the next macrocore, simply increment the pointer!

cur_a += 2*2; cur_b += 2*2;

Note: the numbers in this figure are addresses

within the packing array, not values of matrix

elements.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 44

Packing the tiles Note: the numbers in this figure are addresses

within the packing array, not values of matrix

elements.

• No need to load from the packing arrays into cur_a and cur_b arrays, since the 2x2
macrocores are in contiguous locations in the pack.

• To go to the next macrocore, simply increment the pointer!

cur_a += 2*2; cur_b += 2*2;

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 45

Complete summary

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 46

1. Tile A into row tiles. In the demo tile size=512

Pack the A row tiles in the zigzag fashion

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 47

2. Tile B into column tiles. In the demo tile size = 512.

Pack the B column tiles in the zigzag fashion

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 48

3. Within the inner product for a tile (i.e. within the same jj),

do (tile size/macrocore size)^2 macrocore-sized inner products.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 49

4. Within one macrocore-sized inner product, use zigzag packing and iterate

by simply incrementing pointers

cur_a += 128*128

cur_b += 128*128

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 50

Within a 128x128 macrocore:

 Use the first version, i.e. outer product + 4x4_microcore

HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 51

Thank you
…and thanks to excel that made these otherwise really annoying graphs possible

