
© 2022 Arm

Mats Petersson
3-Apr-2022

Building and running SNAP,
using LLVM Flang

With Performance analysis

© 2022 Arm

Introduction

Why Fortran?
It is still a popular language
• Number 17 on the TIOBE list of languages in December 2021 (lower in March 2022)

Particularly for mathematical/scientific community
• Lots of Maths/floating point, intrinsics for lots of functions

• Complex type part of the language

• Good support for array operations

• Allows more aggressive optimisation than C/C++ (almost always not aliasing)

• Established in 1954, with the latest standard Fortran 2018 – so both old and modern
• The language turns 70 in 2 years! :)

• Support for OpenMP and OpenACC

High usage in Supercomputing

Large code-base of existing code
• Some of which nobody wants to rewrite... Rewrites introduces new bugs! :)

LLVM Flang
Project to make a high quality Fortran compiler on top of LLVM

Written in C++

Uses MLIR – multi-level IR

• Higher level than LLVM-IR

• FIR dialect models Fortran constructs

• High level optimization passes

Currently being merged to LLVM/main from the f18-llvm-project/fir-dev repo
• https://github.com/flang-compiler/f18-llvm-project

• https://github.com/llvm/llvm-project

A few months from full support for Fortran 95 and OpenMP 1.1
• So far focus has been on feature complete rather than optimisation

https://github.com/flang-compiler/f18-llvm-project
https://github.com/llvm/llvm-project

SNAP - introduction
• "SNAP serves as a proxy application to model the performance of a modern discrete

ordinates neutral particle transport application."
• I just barely got a passing grade in Physics, so don't ask me exactly what that means… :)

• About 8500 lines of Fortran 95 code with a few extensions using OpenMP 1.1
• Big enough to be interesting, but not so huge it's impossible

© 2022 Arm

Building and making it
run

Two slides for 4 months...

Building SNAP
Missing intrinsics (built in Fortran functions):

• COMMAND_ARGUMENT_COUNT, GET_COMMAND_ARGUMENT, EXIT (Fortran 2003 functions)

Bugs (see backup slides for example code):
• Sliced arrays as output from subroutines didn’t get copied back

• The omp_set_nested function caused ICE

• OpenMP unstructured failed to compile

• Induction variables are not in memory, but passed as references (this crashes!)

Running SNAP:
• At first, we ran SNAP with OpenMP turned off – even that didn’t work the first days

• Once we got the basics working, turning on OpenMP increased the trouble factor

• This was many steps of "This doesn't work, let's find a way to make it work"

• Runs were compared with gfortran to make sure we're getting the same output

• All of this now works!

So, how fast or slow is it?
In short: about 6 times slower compared to gfortran

The immediate question then is "why is it that much slower?"

And that's what the rest of this presentation is about

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

AArch64

X86-64

Relative performance

LLVM Flang gfortran

© 2022 Arm

First pass of
performance analysis

How we measured performance
SNAP’s output file: total execution time
• $ tail snap-output

• … Total Execution time 1.2345E+01 ...

Using both x86-64 and AArch64 running Ubuntu Linux
• Not comparing x86 with Arm, just for completeness (and the two main platforms for Flang)

Modified the file qasnap/mms_src/2d_mms_st.inp
• nx=80, ny=80, npey=1 (was nx=20, ny=20, npey=4)

OpenMP enabled, but threads = 1, MPI turned off

Using Linux perf tool to get profiling info to understand where we spend time
• https://github.com/torvalds/linux/tree/master/tools/perf

Presenting relative numbers rather than seconds

Perhaps various compiler tools can fix this?
No support for –O<something> in LLVM flang at this point
Using LLVM flang to generate MLIR:
• $ flang-new -fc1 -emit-mlir -S -fopenmp mms.f90

Use fir-opt with various options
• $ fir-opt --basic-cse --cse --fir-memref-dataflow-opt --inline --loop-
invariant-code-motion mms.mlir -o mms.o.mlir
$ tco mms.o.mlir -o mms.o.ll
$ clang –c mms.opt.ll -o mms.o

• No real gains, and some options ICE (e.g. --promote-to-affine)

Use LLVM opt with various options
• $ opt -O3 mms.ll -S -o mms.opt.ll && clang –c mms.opt.ll -o mms.o

• No real gains, no bad effects

Use tco + clang with various options
• $ clang –c mms.opt.ll -O3 -o mms.o

• No real gains, no bad effects

So, now what do we do?
Use perf to find where the time is spent!

• Usual rule of 90% of time is spent in 10% of the code

Figure out why the code is very different between gfortran and flang

Hand-modify the generated FIR code

Use tco + clang to compile to object file, and then use make command to link it
• $ tco mms-hand.mlir -o mms.opt.ll

• $ clang –c –O1 mms.opt.ll -o mms.o

• $ make

Baseline perf results

48.32% gsnap __dim3_sweep_module_MOD_dim3_sweep

23.94% gsnap __mms_module_MOD_mms_src_1._omp_fn.0fn.0

3.69% libc-2.31.so __GI___printf_fp_l

2.18% libc-2.31.so __vfprintf_internal

2.16% libc-2.31.so hack_digit

1.80% gsnap __expxs_module_MOD_expxs_slgg

Gfortran

Flang

Looking at mms_src_1..omp_par first

54.58% fsnap _QMmms_modulePmms_src_1..omp_par

19.26% fsnap Fortran::runtime::DoTotalReduction<double, Fortran::runtime::RealSumAcc

15.35% fsnap _QMdim3_sweep_modulePdim3_sweep

2.91% fsnap _FortranASumReal8

1.64% libc-2.31.so _int_free

0.76% libc-2.31.so malloc

The mms_src_1 openmp parallel region
This function is 124 lines of code. Most of the time is in an OpenMP parallel region
that has 11 nested loops.

There are 10 different places in the whole region that uses qim(m,i,j,k,n,g)

• Each address calculation results in ~59 FIR operations or about 100 assembly instructions on
Aarch64

The innermost loop is essentially two lines:

Even when using clang –O3 on the mms.ll file

• There are a total of 6 calculations for address of element in an array in that one line
(twice for qim(m,i,j,k,n,g)

• Those two lines turn into 230 FIR operations

DO ll = 1, lma(l)

qim(m,i,j,k,n,g) = qim(m,i,j,k,n,g) - ec(m,lm,n)*slgg(mat(i,j,k),l,gp,g)*ref_fluxm(lm-1,i,j,k,g)

lm = lm + 1

END DO

Hoist address calculation code out of loop
Moving the address calculation from inside the innermost loop to the next level out
for all the six addresses – also only doing the qim(…) part once rather than twice.

30.62% fsnap Fortran::runtime::DoTotalReduction<double, Fortran::runtime::RealSumAcc

27.33% fsnap _QMmms_modulePmms_src_1..omp_par

24.27% fsnap _QMdim3_sweep_modulePdim3_sweep

4.80% fsnap _FortranASumReal8

2.92% libc-2.31.so _int_free

1.20% libc-2.31.so malloc

0.00 1.00 2.00 3.00 4.00 5.00 6.00

AArch64

X86-64

Comparing gfortran and hand opt

Hand Opt MMS Gfortran

24%
faster

Next, we attack the dim3_sweep
Studying the code we see that the SUM() function is used in several places

Writing simple sum1d() and sum2d() reduces the overhead over the generic variant

33.39% fsnap _QMmms_modulePmms_src_1..omp_par

27.26% fsnap _QMdim3_sweep_modulePdim3_sweep

26.15% fsnap _QMdim3_sweep_modulePsum1d

2.21% libc-2.31.so _int_free

1.52% libc-2.31.so malloc

1.04% fsnap Fortran::runtime::DoTotalReduction<double, Fortran::runtime::RealSumAcc

33%
faster

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

AArch64

X86-64

Comparing gfortran and SUM opt

SUM Opts Gfortran

Move malloc/free out of loops
There are several calls to malloc/free with constant(ish) sizes in the dim3_sweep code

Moving those calls out of the loops reduces the overhead of those calls

49.74% fsnap _QMmms_modulePmms_src_1..omp_par

36.94% fsnap _QMdim3_sweep_modulePdim3_sweep

1.61% fsnap Fortran::runtime::DoTotalReduction<double, Fortran::runtime::NumericEx

1.43% fsnap _QMexpxs_modulePexpxs_slgg

1.40% fsnap Fortran::runtime::DoTotalReduction<double, Fortran::runtime::NumericEx

1.05% fsnap Fortran::decimal::BigRadixFloatingPointNumber<53, 16>::ConvertToDecima

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

AArch64

X86-64

Comparing gfortran and malloc move

Malloc hoist Gfortran

21%
faster

Less than 3x slower

Bonus gains
Compiling the already optimized code with clang –O3 (instead of default opts)
• $ clang –O3 –c mms-hand.ll -o mms.o

0.00 0.50 1.00 1.50 2.00 2.50 3.00

AArch64

X86-64

Comparing gfortran and clang -03

clang -O3 Gfortran

2.6x slower

1.8x slower

12%
faster

All optimisations in one graph

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

Flang New

Hand opt MMS

Sum opts

Malloc move

-O3 on hand-opt

Gfortran

All optimisations

X86-64 AArch64

Summary
Simple changes gives big improvements in performance
• compiler SHOULD be able to do most of this

• Lack of hoisting is due to missing alias info (confirmed)

• The SUM() function has three calls to intrinsics, extra overhead vs inline solution

• It would be good to avoid using malloc/free for smaller copies of arrays

Next steps
• Work on GitHub tickets

• https://github.com/flang-compiler/f18-llvm-project/issues/1466,1499,1500,1501

• SNAP CI – make sure we don't break what is working (done)

• PR to SNAP -> flang support (done)

• Make flang-new able to compile MLIR (in progress)

• Implement optimisation in flang-new (in progress)
• Add –O{0,1,2,3,…}

• Support FIR level optimisations (e.g. library call replacements and maybe alias analysis at FIR level)

© 2022 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2022 Arm

The sum1d function

FUNCTION sum1d(arr)

REAL(r_knd), DIMENSION(nang), INTENT(IN) :: arr

REAL(r_knd) :: sum1d

REAL(r_knd) :: res

INTEGER :: i

res = 0

do i = 1, nang

res = res + arr(i)

end do

sum1d = res

END FUNCTION sum1d

The sum2d function
FUNCTION sum2d(arr)

REAL(r_knd), DIMENSION(nang, 4), INTENT(IN) :: arr

REAL(r_knd) :: sum2d

REAL(r_knd) :: res

INTEGER :: i, j

res = 0

do i = 1, nang

do j = 1, 4

res = res + arr(i, j)

end do

end do

sum2d = res

END FUNCTION sum2d

Bug #1: sliced arrays not copied back
https://github.com/flang-compiler/f18-llvm-project/issues/1001

PROGRAM p

INTERFACE

SUBROUTINE fillme(a)

REAL, DIMENSION(3, 3), INTENT(OUT) :: a

END SUBROUTINE fillme

END INTERFACE

REAL, DIMENSION(3, 3, 3) :: d

d = 2.0

CALL fillme(d(:,:, 1))

print *, "d=", d

END PROGRAM p

SUBROUTINE fillme(a)

REAL, DIMENSION(3, 3), INTENT(OUT) :: a

a = 1.0

print *, "A=", a

END SUBROUTINE fillme

https://github.com/flang-compiler/f18-llvm-project/issues/1001

Bug #2: omp_set_nested ICE
https://github.com/flang-compiler/f18-llvm-project/issues/918

MODULE PLIB_MODULE

INTEGER :: nnested = 1

LOGICAL :: do_nested

CONTAINS

subroutine omp_set_nested(enable) bind(c)

import

logical, value :: enable

end subroutine omp_set_nested

SUBROUTINE PINIT_OMP

do_nested = nnested > 1

call omp_set_nested(do_nested)

END

END

https://github.com/flang-compiler/f18-llvm-project/issues/918

Bug #3: OpenMP unstructured fail to compile
https://github.com/flang-compiler/f18-llvm-project/issues/1120
(This is one of multiple issues in this area – it's complicated!)

program n

integer :: i

!$omp parallel do schedule(static, 1) num_threads(5)

do i = 1,5

if (i == 1) cycle

print *,i

end do

!$omp end parallel do

end program n

https://github.com/flang-compiler/f18-llvm-project/issues/1120

Bug #4: Induction variable not in memory
https://github.com/flang-compiler/f18-llvm-project/issues/1196

SUBROUTINE outer_src

INTEGER :: k

!$OMP PARALLEL DO SCHEDULE(STATIC,1) PRIVATE(k)

DO k = 1, 4

CALL outer_src_calc (k)

END DO

!$OMP END PARALLEL DO

END SUBROUTINE outer_src

SUBROUTINE outer_src_calc (p)

INTEGER, INTENT(IN) :: p

print *, "p=", p

END SUBROUTINE outer_src_calc

PROGRAM crashing

IMPLICIT NONE

CALL outer_src

END PROGRAM crashing

https://github.com/flang-compiler/f18-llvm-project/issues/1196

