Mats Petersson
3-Apr-2022

© 2022 Arm

arm

Introduction

Why Fortran?

-- It is still a popular language
 Number 17 on the TIOBE list of languages in December 2021 (lower in March 2022)

-- Particularly for mathematical/scientific community
* Lots of Maths/floating point, intrinsics for lots of functions
* Complex type part of the language
e Good support for array operations
* Allows more aggressive optimisation than C/C++ (almost always not aliasing)

e Established in 1954, with the latest standard Fortran 2018 — so both old and modern
* The language turns 70 in 2 years! :)

e Support for OpenMP and OpenACC
-- High usage in Supercomputing
-- Large code-base of existing code
* Some of which nobody wants to rewrite... Rewrites introduces new bugs! :)

LLVM Flang

-- Project to make a high quality Fortran compiler on top of LLVM
-- Written in C++
-- Uses MLIR — multi-level IR

* Higher level than LLVM-IR

* FIR dialect models Fortran constructs
* High level optimization passes

-- Currently being merged to LLVM/main from the f18-llvm-project/fir-dev repo
* https://github.com/flang-compiler/f18-llvm-project

e https://github.com/llvm/llvm-project

-- A few months from full support for Fortran 95 and OpenMP 1.1
 So far focus has been on feature complete rather than optimisation

https://github.com/flang-compiler/f18-llvm-project
https://github.com/llvm/llvm-project

SNAP - introduction

e "SNAP serves as a proxy application to model the performance of a modern discrete
ordinates neutral particle transport application."

| just barely got a passing grade in Physics, so don't ask me exactly what that means...:)

e About 8500 lines of Fortran 95 code with a few extensions using OpenMP 1.1

* Big enough to be interesting, but not so huge it's impossible

arm

Building and making it
run

Two slides for 4 months...

Building SNAP

-- Missing intrinsics (built in Fortran functions):
* COMMAND ARGUMENT COUNT, GET COMMAND ARGUMENT, EXIT (Fortran 2003 functions)

-- Bugs (see backup slides for example code):
* Sliced arrays as output from subroutines didn’t get copied back
* The omp_set nested function caused ICE
* OpenMP unstructured failed to compile
* Induction variables are not in memory, but passed as references (this crashes!)

-- Running SNAP:
* At first, we ran SNAP with OpenMP turned off — even that didn’t work the first days
* Once we got the basics working, turning on OpenMP increased the trouble factor

* This was many steps of "This doesn't work, let's find a way to make it work"

* Runs were compared with gfortran to make sure we're getting the same output

e All of this now works!

So, how fast or slow is it?

-- In short: about 6 times slower compared to gfortran
-- The immediate question then is "why is it that much slower?"
-- And that's what the rest of this presentation is about

Relative performance

X86-64

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

H LLVM Flang ®gfortran

arm

First pass of
performance analysis

How we measured performance

-- SNAP’s output file: total execution time
* S tail snap-output
e .. Total Execution time 1.2345E+01 ...

-- Using both x86-64 and AArch64 running Ubuntu Linux

* Not comparing x86 with Arm, just for completeness (and the two main platforms for Flang)
-- Modified the file gasnap/mms_src/2d_mms_st.inp
* nx=80, ny=80, npey=1 (was nx=20, ny=20, npey=4)
-- OpenMP enabled, but threads =1, MPI turned off
-- Using Linux perf tool to get profiling info to understand where we spend time
* https://github.com/torvalds/linux/tree/master/tools/perf
-~ Presenting relative numbers rather than seconds

Perhaps various compiler tools can fix this?

No support for -O<something> in LLVM flang at this point
Using LLVM flang to generate MLIR:

e S flang-new -fcl -emit-mlir -S -fopenmp mms.f90
-- Use fir-opt with various options

e $ fir-opt --basic-cse --cse --fir-memref-dataflow-opt --inline --loop-
invariant-code-motion mms.mlir -o mms.o.mlir
S tco mms.o.mlir -o mms.o.1l1
$ clang —-c mms.opt.ll -0 mms.o

* No real gains, and some options ICE (e.g. ——promote-to-affine)
-- Use LLVM opt with various options
* $ opt -03 mms.ll -S -o mms.opt.ll && clang —-c¢c mms.opt.ll -0 mms.o
* No real gains, no bad effects
-- Use tco + clang with various options
* $ clang —¢c mms.opt.ll -03 -0 mms.o
* No real gains, no bad effects

So, now what do we do?

-- Use perf to find where the time is spent!
e Usual rule of 90% of time is spent in 10% of the code

-- Figure out why the code is very different between gfortran and flang

-- Hand-modify the generated FIR code
-- Use tco + clang to compile to object file, and then use make command to link it

* $ tco mms-hand.mlir -o mms.opt.1l1l
* S clang —¢ -01 mms.opt.ll -0 mms.o

e S make

Baseline pertf results

-- Gfortran
48.32% | gsnap __dim3_sweep_module_ MOD_dim3_sweep
23.94% | gsnap __mms_module_MOD_mms_src_1. omp_fn.0fn.0
3.69% | libc-2.31.s0 __Gl___printf _fp_|I
2.18% | libc-2.31.s0 __vfprintf_internal
2.16% | libc-2.31.s0 hack_digit
1.80% | gsnap __expxs_module_MOD_expxs_slgg
-- Flang

54.58% | fsnap

_QMmms_modulePmms_src_1..omp_par

19.26% | fsnap

Fortran::runtime::DoTotalReduction<double, Fortran::runtime::RealSumAcc

15.35% | fsnap

_QMdim3_sweep_modulePdim3_sweep

2.91% | fsnap

_FortranASumReal8

1.64% | libc-2.31.s0

_int_free

0.76% | libc-2.31.s0

malloc

-~ Lookingatmms src 1..omp par first

The mms_src_1 openmp parallel region

-~ This function is 124 lines of code. Most of the time is in an OpenMP parallel region
that has 11 nested loops.

-- There are 10 different places in the whole region thatuses gim (m, 1, 7, k, n, g)

* Each address calculation results in ~59 FIR operations or about 100 assembly instructions on
Aarch64

-- The innermost loop is essentially two lines:
DO 11 =1, 1Ima(l)

gim(m,1i,j,k,n,qg) = gim(m,1i,J,k,n,g) - ec(m,lm,n) *slgg(mat(i,J,k),1l,g9p,9) *ref fluxm(lm-1,1,7,k,qg)
Im = Im + 1
END DO

-- Even when using clang —03 onthe mms.llfile

* There are a total of 6 calculations for address of element in an array in that one line
(twice for gim(m, 1, j,k,n, g)

* Those two lines turn into 230 FIR operations

Hoist address calculation code out of loop

-- Moving the address calculation from inside the innermost loop to the next level out
for all the six addresses — also only doing the gim (...) part once rather than twice.

30.62% | fsnap Fortran::runtime::DoTotalReduction<double, Fortran::runtime::RealSumAcc
27.33% | fsnap _QMmms_modulePmms_src_1..omp_par
24.27% | fsnap _QMdim3_sweep_modulePdim3_sweep

4.80% | fsnap _FortranASumReal8

2.92% | libc-2.31.s0 | _int_free

1.20% | libc-2.31.s0 | malloc

Comparing gfortran and hand opt

X86-64

AArch64 —

0.00 1.00 2.00 3.00 4.00 5.00 6.00

B Hand Opt MMS B Gfortran

Next, we attack the dim3 sweep

-- Studying the code we see that the SUM() function is used in several places
-- Writing simple sum1d() and sum2d() reduces the overhead over the generic variant

33.39% | fsnap _QMmms_modulePmms_src_1..omp_par
27.26% | fsnap _QMdim3_sweep_modulePdim3_sweep
26.15% | fsnap _QMdim3_sweep_modulePsum1d
2.21% | libc-2.31.s0 _int_free
1.52% | libc-2.31.s0 malloc
1.04% | fsnap Fortran::runtime::DoTotalReduction<double, Fortran::runtime::RealSumAcc

Comparing gfortran and SUM opt

X86-64

AArches —

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

B SUM Opts B Gfortran

Move malloc/free out of loops

-- There are several calls to malloc/free with constant(ish) sizesin the dim3_sweep code

-- Moving those calls out of the loops reduces the overhead of thgse calls

49.74% | fsnap _QMmms_modulePmms_src_1..omp_par
36.94% | fsnap _QMdim3_sweep_modulePdim3_sweep
1.61% | fsnap Fortran::runtime::DoTotalReduction<double, Fortran::runtime::NumericEx
1.43% | fsnap _QMexpxs_modulePexpxs_slgg
1.40% | fsnap Fortran::runtime::DoTotalReduction<double, Fortran::runtime::NumericEx }O
1.05% | fsnap Fortran::decimal::BigRadixFloatingPointNumber<53, 16>::ConvertToDecima 0{6

Comparing gfortran and malloc move

_— F
\Less than 3x slower
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

® Malloc hoist ™ Gfortran

Bonus gains

-- Compiling the already optimized code with clang —O3 (instead of default opts)

* $ clang -03 -c mms-hand.ll -o mms.o

Comparing gfortran and clang -03

r A __ 1.8xslower

.00 0.50 1.00 1.50 2.00 2.50 3.00 2.6X Slower

B clang-03 M Gfortran

X86-64

AArch64
0

All optimisations in one graph

All optimisations

Gfortran

-03 on hand-opt
Malloc move
Sum opts

Hand opt MMS

Flang New

0.

o

0 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

H X86-64 M AArch64

summary

-- Simple changes gives big improvements in performance
e compiler SHOULD be able to do most of this
* Lack of hoisting is due to missing alias info (confirmed)
* The SUM() function has three calls to intrinsics, extra overhead vs inline solution
* |t would be good to avoid using malloc/free for smaller copies of arrays
-- Next steps
* Work on GitHub tickets

* https://github.com/flang-compiler/f18-llvm-project/issues/1466,1499,1500,1501
e SNAP ClI — make sure we don't break what is working (done)

* PR to SNAP -> flang support (done)

* Make flang-new able to compile MLIR (in progress)

* Implement optimisation in flang-new (in progress)
 Add-0{0,1,2,3,...}

* Support FIR level optimisations(e.g. library call replacements and maybe aliasanalysisat FIR level)

arm

2022 Arm

Thank You
Danke
Gracias
Grazie
G
HYHED
Asante
Merci
&AL T
Tddlq
Kiitos

8
SRIBIG
NTIN

2022 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

The sumld function

FUNCTION sumld(arr)

REAL (r knd), DIMENSION (nang), INTENT(IN) :: arr
REAL(r:knd) :: sumld
REAL (r knd) :: res
INTEGER :: 1
res = 0
do 1 = 1, nang
res = res + arr (i)
end do
sumld = res

END FUNCTION sumld

The sum2d function

FUNCTION sumZ2d (arr)

REAL (r knd), DIMENSION (nang, 4), INTENT (IN) :: arr
REAL (r knd) :: sum2d
REAL (r knd) :: res
INTEGER :: i, 7J
res = 0
do 1 = 1, nang
do 7 =1, 4
res = res + arr (i, 7)
end do
end do
sum2d = res

END FUNCTION sum2d

Bug #1: sliced arrays not copied back

https://github.com/flang-compiler/f18-llvm-project/issues/1001

PROGRAM p
INTERFACE
SUBROUTINE fillme(a)
REAL, DIMENSION(3, 3), INTENT(OUT) :: a
END SUBROUTINE fillme
END INTERFACE

REAL, DIMENSION(3, 3, 3) :: d
d= 2.0

CALL fillme(d(:,:, 1))
print *, "d=", d

END PROGRAM p

SUBROUTINE fillme(a)

REAL, DIMENSION(3, 3), INTENT(OUT) :: a
a=1.0
print *, "A=", a

END SUBROUTINE fillme

https://github.com/flang-compiler/f18-llvm-project/issues/1001

Bug #2: omp set nested ICE

https://github.com/flang-compiler/f18-llvm-project/issues/918

MODULE PLIB MODULE

INTEGER :: nnested =1
LOGICAL :: do nested
CONTAINS

subroutine omp set nested(enable) bind(c)
import
logical, value :: enable

end subroutine omp set nested

SUBROUTINE PINIT OMP
do nested = nnested > 1
call omp set nested(do nested)

END

END

https://github.com/flang-compiler/f18-llvm-project/issues/918

Bug #3: OpenMP unstructured fail to compile

https://github.com/flang-compiler/f18-llvm-project/issues/1120
(This is one of multipleissues in this area — it's complicated!)

program n

integer :: 1
!Somp parallel do schedule (static, 1) num threads(5)
do 1 = 1,5
if (1 == 1) cycle
print *,1
end do

'Somp end parallel do

end program n

https://github.com/flang-compiler/f18-llvm-project/issues/1120

Bug #4: Induction variable not in memory

https://github.com/flang-compiler/f18-llvm-project/issues/1196

SUBROUTINE outer src
INTEGER :: k
!SOMP PARALLEL DO SCHEDULE (STATIC,1) PRIVATE (k)
DO k = 1, 4
CALL outer src calc (k)
END DO
!$SOMP END PARALLEL DO
END SUBROUTINE outer src

SUBROUTINE outer src calc (p)
INTEGER, INTENT (IN) :: p
print *, "p=", p

END SUBROUTINE outer src calc

PROGRAM crashing
IMPLICIT NONE
CALL outer src

END PROGRAM crashing

https://github.com/flang-compiler/f18-llvm-project/issues/1196

