
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Improving the OpenMP Offloading
Driver: LTO, Libraries, and Toolchains

LLVM Performance Workshop @ CGO 2022

April 3rd 2022

Joseph Huber

2

Overview &
Motivation

3

OpenMP Offloading Overview

• Allows users to offload
execution of code to
another device

• Requires the compiler driver
to compile & link multiple
programs

• The linked image also needs
to be registered

#include <complex>

using complex = std::complex<double>;

void zaxpy(complex *X, complex *Y, complex D, int N) {
#pragma omp target teams distribute parallel for
 for (int i = 0; i < N; ++i)
 Y[i] = D * X[i] + Y[i];
}

int main() {
 const int N = 1024;
 complex X[N], Y[N], D;
#pragma omp target data map(to:X[:N]) map(tofrom:Y[:N])
 zaxpy(X, Y, D, N);
}

4

Current OpenMP Offloading Driver Overview

C/C++ and
OpenMP

Clang

Device Codegen

Dev
IR

Host
IR

Dev
ASM

LLVM

Dev
Obj

Host
Obj

Fat
Binary

Ven
do

r

too
ls

Bundler

LLVM

Fat Binary
Clang

Device Linking

Dev
Obj

Host
Obj

Dev
Exe

Host
Image

Exe

Ven
do

r

too
ls

Host
Linker libomptarget

(host, plugins)

Wrapper

Compilation

Linking
Different stages for

AMDGPU and NVPTX!

5

Motivation

• Why isn't the current method good enough?
• Handle device code the same as host code and support

static linking
• Unify the required stages across all toolchains
• Support Link Time Optimization on the device
• Enable offloading language interoperability

6

New Driver
Implementation

7

New OpenMP Offloading Driver

• Embed the device objects directly in the host object
– Data is stored in an excluded section

• Linking is done by a linker wrapper application
– Scan each input for embedded device objects
– Extract & link each image
– Wrap the linked device image in a new host object file
– Run the original linking job with the new wrapped image

8

New OpenMP Offloading Driver Overview

C/C++ and
OpenMP

Clang

Device Codegen

Dev
IR

Host
IR

Dev
ASM

LLVM

Dev
Obj

Host
Obj

Ven
do

r

too
lsLLVM

Host Obj Exe

Linker
Wrapper

Compilation

Linking

LLVM

Device code embedded directly
as a section in host object

Device linking complexity handled
in a single stage

libomptarget
(host, plugins)

9

Embedding OpenMP Offloading Code

C/C++ and
OpenMPC/C++ and

OpenMP

Device Object
Device Object

Device ObjectHost IR

Active Toolchains

Host Object

@.llvm.embedded.object = private constant [N x i8] c"...", section ".llvm.offloading"

omp_offloading_entries

Section Table

Host Sections

.llvm.offloading

Section Contents

<Bitcode or Object>

<triple and arch>

<...>

Contains kernels and
globals to register

10

OpenMP Offloading Linker Wrapper

Linker Input

Dev
Obj Host

Image

Exe

Wrapper

Linker Input
Linker Input

Dev
ObjDev

Obj

Vendor
Linker

Dev
ObjDev

ObjDev
BC

Dev
Obj

LTO

Dev
Exe

E
xt

ra
ct

Device Linking

Links every extracted object with
a compatible triple & architecture

Wrapped
Linker job

11

Benefits

• Offloading binaries behave like host binaries
– Static libraries and relocatable linking works as expected

• Fewer stages required to create an offloading program
• Much simpler driver code
• Fully functional LTO on the device -foffload-lto

– Greatly improves performance on some applications
– The OpenMPOpt pass greatly benefits from whole program visibility

• (See Optimizing OpenMP GPU Execution in LLVM @ LLVM Dev2021)
• Will be the default method for OpenMP Offloading very soon!

https://www.youtube.com/watch?v=4EPl7De3cKg

12

Future Work &
Interoperability

13

Extending the New Driver

• The new driver can be adapted for CUDA / HIP as well
– Change code-generation to support the offloading sections
– Implement a wrapper for CUDA / HIP code

• Allows for redistributable device code (RDC) support in Clang
• The linker wrapper will link all compatible object files
• Allows for OpenMP to call CUDA code and vice-versa

– Needs additional code for full interoperability

14

Embedding CUDA & OpenMP Offloading Code

C/C++ and
OpenMPC/C++/CUDA
and OpenMP

Device Object
Device Object

Device ObjectHost IR

Active Toolchains

Host Object

@.llvm.embedded.object = private constant [N x i8] c"...", section ".llvm.offloading"

omp_offloading_entries

Section Table

Host Sections

cuda_offloading_entries

Section Contents

<Bitcode or Cubin>

<triple, arch and kind>

<...>

Contains kernels and
globals to register for both

.llvm.offloading

New CUDA
CodeGen

15

Offloading Linker Wrapper

Linker Input

Dev
Obj Host

Image

Exe

OpenMP
Wrapper

Linker Input
Linker Input

Dev
ObjOMP

Obj

Vendor
Linker

Dev
ObjDev

ObjCuda
Obj

Dev
Obj

E
xt

ra
ct

Device Linking

Wrapped
Linker job

Host
Image

Cuda
Wrapper

+ -lcudart -l…

* Device Images will
be distinct

16

Generic Offloading Libraries

• Create a static library with code for every
offloading target
– Allow more compatible architectures to be

linked
• No longer need to specially compile &

link device bitcode libraries

<nvptx64 sm_80>

<...>

<nvptx64 sm_70>

<nvptx64 any>

<amdgcn gfx908>

Section Contents

17

Linker Wrapper in the Linker

• Currently we rely on Clang to call the linker wrapper with the
appropriate arguments

• Prevents offloading code from being truly agnostic
• Embed the linker wrapper functionality inside a linker plugin or

LLD

18

Application
Experiences

19

MiniMDock

• Protein-ligand docking
mini-application

• A call to an external
function prevented a
crucial optimization

• Device-side LTO allows us
to see the whole program

Figure Generated by Mathialakan Thavappiragasam

20

Thermo4PFM

• Library to evaluate alloy
compositions in Phase-Field models

• Application built with static libraries
• Large amount of files with device

code

Figure Generated by Jean-Luc Fattebert

~2x

21

OpenMC

• Monte-Carlo particle
transport application

• Needed a CMake Unity
build to get reasonable
performance

• Device-side LTO gives the
same performance and
compiles several times
faster

22

MiniQMC

• Quantum Monte-Carlo
mini-application

• Made heavy use of static libraries
– Can now compile without a

CMake workaround
• No performance difference with

and without LTO

23

Conclusion &
Closing Thoughts

24

Conclusion & Closing thoughts

• The new driver greatly improves the usability of OpenMP
Offloading in LLVM
– Allows interoperability
– Multiple devices embedded in the same binary

• Device-side LTO gives real-world applications significant
performance increases

• A unified offloading Toolchain is possible

25

Questions?

26

Current Drawbacks

• Currently still relies on Clang to call the linker wrapper
• Cannot embed device code without host LLVM IR

– Need a new phase to perform an objcopy
• Cannot properly handle incremental compilation

– e.g. clang foo.c -S

