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Overview & 
Motivation
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OpenMP Offloading Overview

• Allows users to offload 
execution of code to 
another device

• Requires the compiler driver 
to compile & link multiple 
programs

• The linked image also needs 
to be registered

#include <complex>

using complex = std::complex<double>;

void zaxpy(complex *X, complex *Y, complex D, int N) {
#pragma omp target teams distribute parallel for
  for (int i = 0; i < N; ++i)
    Y[i] = D * X[i] + Y[i];
}

int main() {
  const int N = 1024;
  complex X[N], Y[N], D;
#pragma omp target data map(to:X[:N]) map(tofrom:Y[:N])
  zaxpy(X, Y, D, N);
}
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Current OpenMP Offloading Driver Overview
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Motivation

• Why isn't the current method good enough?
• Handle device code the same as host code and support 

static linking
• Unify the required stages across all toolchains
• Support Link Time Optimization on the device
• Enable offloading language interoperability
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New Driver 
Implementation



7

New OpenMP Offloading Driver

• Embed the device objects directly in the host object
– Data is stored in an excluded section

• Linking is done by a linker wrapper application
– Scan each input for embedded device objects
– Extract & link each image
– Wrap the linked device image in a new host object file
– Run the original linking job with the new wrapped image
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New OpenMP Offloading Driver Overview
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Embedding OpenMP Offloading Code
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OpenMP Offloading Linker Wrapper
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Benefits

• Offloading binaries behave like host binaries
– Static libraries and relocatable linking works as expected

• Fewer stages required to create an offloading program
• Much simpler driver code
• Fully functional LTO on the device -foffload-lto

– Greatly improves performance on some applications
– The OpenMPOpt pass greatly benefits from whole program visibility

• (See Optimizing OpenMP GPU Execution in LLVM @ LLVM Dev2021)
• Will be the default method for OpenMP Offloading very soon!

https://www.youtube.com/watch?v=4EPl7De3cKg
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Future Work & 
Interoperability
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Extending the New Driver

• The new driver can be adapted for CUDA / HIP as well
– Change code-generation to support the offloading sections
– Implement a wrapper for CUDA / HIP code

• Allows for redistributable device code (RDC) support in Clang
• The linker wrapper will link all compatible object files
• Allows for OpenMP to call CUDA code and vice-versa

– Needs additional code for full interoperability
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Embedding CUDA & OpenMP Offloading Code
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Offloading Linker Wrapper
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Generic Offloading Libraries

• Create a static library with code for every 
offloading target
– Allow more compatible architectures to be 

linked
• No longer need to specially compile & 

link device bitcode libraries
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Linker Wrapper in the Linker

• Currently we rely on Clang to call the linker wrapper with the 
appropriate arguments

• Prevents offloading code from being truly agnostic
• Embed the linker wrapper functionality inside a linker plugin or 

LLD
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Application 
Experiences
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MiniMDock

• Protein-ligand docking 
mini-application

• A call to an external 
function prevented a 
crucial optimization

• Device-side LTO allows us 
to see the whole program

Figure Generated by Mathialakan Thavappiragasam
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Thermo4PFM

• Library to evaluate alloy 
compositions in Phase-Field models

• Application built with static libraries
• Large amount of files with device 

code

Figure Generated by Jean-Luc Fattebert

~2x



21

OpenMC

• Monte-Carlo particle 
transport application

• Needed a CMake Unity 
build to get reasonable 
performance

• Device-side LTO gives the 
same performance and 
compiles several times 
faster
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MiniQMC

• Quantum Monte-Carlo 
mini-application

• Made heavy use of static libraries
– Can now compile without a 

CMake  workaround
• No performance difference with 

and without LTO
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Conclusion & 
Closing Thoughts
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Conclusion & Closing thoughts

• The new driver greatly improves the usability of OpenMP 
Offloading in LLVM
– Allows interoperability
– Multiple devices embedded in the same binary

• Device-side LTO gives real-world applications significant 
performance increases

• A unified offloading Toolchain is possible
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Questions?
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Current Drawbacks

• Currently still relies on Clang to call the linker wrapper
• Cannot embed device code without host LLVM IR

– Need a new phase to perform an objcopy
• Cannot properly handle incremental compilation

– e.g. clang foo.c -S


